
 
 

 

 

 

 



 
 

 

 



 
 

 

 

 



Abstract 

 

This study examines the relationship between the entry of Transportation Network 

Companies (TNCs) and traffic congestion within urban areas of the United States. For this 

analysis, I use the Texas A&M Transportation Institute Urban Mobility Report (UMR) and 

data on TNCs (namely, Lyft and Uber) collected from the local news of target cities to 

identify the entry of TNCs in each of the 101 urban areas. Specifically, this paper analyzes 

the effect of the entry of TNCs on traffic congestion using the fixed effects approach and 

instrumental variable strategy to account for possible endogeneity problems. The findings 

indicate that the entry of TNCs has a negative impact on mitigating traffic congestion. 

These findings are inconsistent with previous studies. 
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1.  Introduction and Background 

The rapid expansion of transportation network companies (TNCs), such as Lyft and Uber, 

that provide app-based ride-sourcing services has led policy makers and regulators in 48 

American states, although more prominently in certain states, to quickly pass some sort of 

TNC-related legislation (Goodin and Moran, 2017).  As policy makers across the United 

States continue to work toward establishing well-targeted interventions to keep innovation-

the new travel options that allow connecting passengers seeking for rides with drivers 

willing to provide with their existing personal vehicles-working harmoniously, numerous 

traffic-related issues regarding TNCs have been raised in public debate. 

 

Figure 1 U.S. State-Level TNC Legislation 

 

 

 

 

             Source: Texas A&M Transportation Institute 

 

 

In the ongoing debate, there are two dominant perspectives on the impacts of TNCs: 

innovation and disruption. The innovation perspective views TNCs as having enormous 



potential to alleviate excess vehicle traffic congestion in American cities by replacing solo 

drivers with shared network services (Feigon and Murphy, 2016; Shiryaevskaya, 2017; 

Williams, 2016). Contrary to this positive view, the alternative perspective identifies TNCs 

as an ever-growing contributor to the problem of traffic congestion as TNCs attract people 

to use vehicle transportation who would otherwise likely walk or use public transit 

(Komanoff, 2017; Morrell, 2017; Wallsten, 2015; Fraiberger and Sundararajan, 2017). 

Table 1 illustrates how the existence of TNCs can impact traffic congestion in more detail. 

While many have discussed and studied the potential effects of TNCs, there is still limited 

analytical evidence. The purpose of this paper extends current research in the field in a 

number of noteworthy ways, including providing missing empirical analysis. 

This paper focuses on the impact that TNCs have on traffic congestion, specifically 

focusing on the cases of Uber and Lyft, the two largest TNC platforms, ranked second and 

fifteenth respectively out of 215 companies in the CB Insight’s database of unicorn 

companies (CB Insights, 2019). However, as I explain more formally in the following 

section, causal identification of the relationship between TNCs and traffic congestion faces 

two primary obstacles: data availability and endogeneity. To conduct the analysis, I 

retrieved the best available traffic congestion data in relevant urban areas and reviewed 

local news media to determine if or when TNCs arrived in each area. 

To identify the causal impact of TNCs on traffic congestion, I made use of instrumental 

variables and employed a difference-in-difference identification strategy to address for the 

potential endogeneity. For both identification strategies, I included a set of explanatory 

variables that simultaneously affect traffic congestion and TNCs, allowing me to move 



toward the assumption needed to lessen potential endogeneity concerns. The empirical 

results for all key coefficients of interest were positive in all cases, indicating that the entry 

of TNCs increases traffic congestion. 

Finally, in robustness checks, I used only large population datasets instead of a broader 

set of urban areas for comparisons. According to Cortright (2010), the UMR states that 

these areas account for about 81% of the nation’s total estimated congestion costs, such as 

loss of time and excess fuel consumption. TNC ridership growth has also accelerated in 

congested and densely populated metropolitan areas (Schaller Consulting, 2018). Though 

not conclusive, these results serve to reduce the bias of the estimated coefficients and 

account for spurious relationship. Moreover, obtaining similar results via different 

dependent variables lends credibility to the idea that the impact of TNCs on traffic 

congestion, rather than other factors, is what is being accounted. 

 

1.1 Literature Review 

Transportation Network Companies and Traffic Congestion 

Previous studies suggest that TNCs have the potential to provide timely and efficient forms 

of transportation and to reduce vehicle traffic congestion by substituting individual private 

car ownership with ride-sharing services (Shaheen and Chan, 2015). For example, car-

sharing systems reduced the net number of vehicles owned by urban residents within 

Calgary, Alberta, Vancouver, British Columbia, and Washington, DC. OECD/ITF(2015) 

findings suggest that P2P services translate into reduced greenhouse gas emissions due 

mainly to the impact of TNCs on the VMT. According to Thornley (2017), privately owned 



vehicles are used less than shared vehicles, which reduces the number of cold starts; this 

means shared vehicles lead to increased emissions when compared to privately owned 

vehicles. In line with previous studies, Murphy et al. (2016) identifies that TNC users are 

more likely to also use public transit. Furthermore, Davis and Dutzik (2012) suggests that 

these new mobility services are partially responsible for decreased rates of demand for 

private vehicle ownership by younger Americans; this suggests that the demand for ride-

sharing services will continue to grow in significance. 

Pew Research Center (2016) finds that 86% of TNC users indicate that TNCs save time 

and stress, suggesting that commuters in areas with heavy traffic may choose to use TNCs 

over other transportation options. As of yet, it is not clear whether the entry of TNCs into 

American cities will ultimately increase traffic congestion by attracting people who would 

otherwise use public transit or alleviate excess vehicle traffic congestion by replacing solo 

drivers with shared network services (Refer to Table 1).  

The paper proceeds as follows. Section 2 reviews the related literature on TNCs. 

Section 3 describes the empirical models and data set for the analysis. Section 4 presents 

the results of the main analysis. Section 5 concludes. 

 

 

 

 

 

 



Table 1 - The perspectives on the impact of TNCs 

Positive Negative 

① Reduce solo drivers 

 Leads to efficient allocation of spare capacity and address 

parking needs: save travel cost 

 Mitigate traffic -> reduce travel time 

 Conserve fuel 

 Reduce air pollution 

 Reduce car ownership 

 Reduce vehicle miles travelled 

 Eliminates transport infrastructure costs (Gavin, 2016) 

② Meet the public’s demand for convenient and affordable 

transportation services (Schaller Consulting, 2017) when there is a 

shortage of cab availability (Bliss, 2017)  

③ TNC users are more likely to use the public transport (Shared Use 

Mobility Center, 2016) 

④ Data-driven driving (Simons, 2017; Lee, 2017) 

 Potential to mitigate congestion and reduce vehicle emission 

(Schaller Consulting, 2017) 

⑤ Improve traffic and save money (Simons, 2017) Shared motilities 

are intensely used 

 Cars have shorter life cycles and less CO2 emissions (IFT, 2015) 

⑥ Maximize impaired-driving reduction (TTI, 2017) 

⑦ Uber is a complement for public transit(Hall, Palsson, Price, 

2018) 

① Attract more drivers on the road 

 Rise of private car transport 

 Increase of 600 million driving miles from 2013-2016 

(Roberts, 2017) 

 A net increase of 600 million Vehicles Miles Traveled 

(Komanoff, 2017) 

② Attract people who would otherwise walk, bike, or use public 

transports 

③ Add congestion during traffic hours 

 Incentive to drive at peak hours surge pricing problems 

(Wang, 2015) 

④ Potential indirect impacts from TNCs activities(Hughes, 

2017) 

 Blocking traffic and bike lanes 

 Traffic violations such as illegal U-turns (Kunkle, 2016) 

⑤ Negative impact on the taxi industry (TTI, 2017) 

 

Source: Multiple Sources



2.  Data and Methodology 

The paper examines the effects of TNCs on traffic congestion using a metropolitan 

statistical area-level panel dataset that spans 8 years from 2007 to 2014, covering 97 

metropolitan statistical areas within 42 states across the U.S. The analysis is based on a 

panel dataset that consists primarily of four sets of parameters: 1) traffic congestion, 2) 

TNCs entry, 3) a set of control variables, and 4) two instrumental variables. Data for each 

of the four parameters come from a variety of sources, therefore to obtain a consistent 

dataset, all data were collected at the metropolitan level and integrated using the urban 

area’s special code, Geofips. The details of the variables are discussed in more detail below. 

I restrict the observation from period 2007 to 2014, given that the earliest entrance for Uber 

is 2011 and 2012 for Lyft. The completed dataset covers 567 observations broadly 

described in Tables 2 and 3. 

 

The indicators of traffic congestion and TNCs 

As noted above, the goal of this paper is to identify the causal effect of TNC entry on traffic 

congestion. However, there are several limitations to drawing firm conclusions regarding 

the impact of TNCs. The first limitation is data availability. Specifically, the actual volumes 

of TNCs and of traffic congestion, albeit for different reasons, are difficult to measure. 

Therefore, a key step in the empirical strategy is finding convincing proxy measures of 

traffic congestion and TNCs. 

The general definition of traffic congestion, mainly characterized by average speed, 

flow, density, delay, and travel time variability, can be used to analyze congestion levels in 



urban areas (Amudapuram Rao and Kalaga Rao, 2012). The 2015 Urban Mobility Report, 

the main dataset I used for my overall analysis, has been widely referenced in several 

academic papers (VPTI, 2018; ATC, 2017; Sisiopiku, 2017; Rao, 2012; Sweet, 2011; 

Toledo, 2011; Chen, 2010; Hymel, 2008) and acknowledged as the “the best available 

means of comparing congestion levels in different regions and tracking changes in regional 

congestion levels over time.” (Downs, 2004, pp.17). 

For this analysis, Trafficcongestioni is based on several urban mobility and congestion-

related statistics reported in the dataset provided by the Urban Mobility Report (UMR). 

These include Travel Time Index, Travel Delay, Congestion Cost, and Excess Fuel 

Consumed. The details of the 5 variables are as follows.  

Traveldelay is the time wasted due to speeds that are slower than free-flow speeds. 

Congestioncost represents the value of congestion-related costs: the time delayed and the 

wasted fuel in total dollars. Texas Transport Institute collaborated with Wisconsin Energy 

Institute to develop the ExcessFuelConsumed, which calculates the fuel efficiency in 

congestion and free-flow based on the carbon dioxide emission estimates. The summary 

statistics of the five performance measures of traffic congestion are given in Table 2. 

 

Table 2-Description and Summary Statistics for Measures of Traffic Congestion 

Variables Description Mean Std. 

Dev. 

Min Max 

Log_TD Log Annual hours of Total Delay (billion hrs) 3.64 .33 2.08 4.45 

Log_CD Log Annual congestion cost (billions of 2014 

dollars) 

6.59 1.12 3.91 9.70 

Log_EF Log Annual excess fuel consumed (billion 

gallons) 

9.46 1.10 6.75 12.6 



 

In this analysis, the key parameter of interest is the coefficient on TNCs’ entry. 

However, the actual trip volumes of TNCs are difficult to measure because these services 

are still relatively new, and there is a lack of information available about the actual trip 

volumes of TNCs due to TNCs’ privacy and competition concerns. (TTI Report). 

Instead of via direct observation, the data for Uber and Lyft was obtained from cities’ 

local news reports in order to uniquely identify when TNCs were officially launched in 

various American cities. The independent variable, TNCs, used in this paper equals 1 if 

Lyft or Uber has been introduced in the urban area, 2 if both Lyft and Uber have been 

introduced, and 0 if neither has been introduced. 

 

Control variables 

Table 2 summarizes the variety of control variables explored within this paper; public 

transit services, walking, and “no vehicles” data was obtained from ACS. VPTI (2018) and 

Beaudoin and Lawell (2017) advocate public transit and walking as means to relieve traffic 

congestion. Flow (2016) provides general findings on the congestion-related and the socio-

economic impacts of walking. Increased car ownership has been widely accepted by 

researchers as one of main contributors to increased traffic congestion.  

Demands for road space are strongly correlated with the socio-economic factors of 

economy development and population (Amudapuram Rao and Kalaga Rao, 2012). 

Beaudoin and Lawell (2017) finds that the elasticity of autonomous travel with respect to 

population is 0.47. Sweet (2013) suggests a positive association between large metropolitan 



areas and larger economies. Gas and diesel expenses shift the cost of driving and are thus 

correlated with car use. In their paper, Li, Hong and Zhang (2017) include freeway VMT 

and arterial VMT as variables affecting traffic. Data for these variables came from different 

sources. Data on population, freeway VMT, arterial VMT, diesel cost, and gas cost comes 

from UMR. GDP and median income are drawn from Census Bureau and US Bureau of 

Economic Analysis respectively. The summary statistics are presented in Table 3. 

 

Table 3-Description of Control Variables and summary statistics 

Variables Description Mean Std. 

Dev. 

Min Max 

Log_gdp Log GDP in dollars 10.97 1.039 8.41 12.25 

Log_popu Log population 6.88 0.964 4.55 9.85 

Log_income Log median income 10.90 0.181 10.31 11.44 

Log_comm Log number of auto commuters(000) 6.17 0.925 3.78 8.69 

Log_gas  Avg. diesel cost($/gallon) .918 0.326 0.13 1.47 

Log_diesel Avg. gasoline cost($/gallon) .100 0.371 0.19 1.59 

Log_freewa

y 

Log Free daily vehicle miles of 

travel(000) 

9.02 1.10 6.06 11.84 

Log_arterial Log arterial street daily vehicle miles 

of travel(000) 

9.11 0.95 6.90 11.74 

Public_trans Public transportation(excluding taxi) 68,791.9 288,765.4 195 2,932,789 

No vehicles No vehicle available 52,165.8 209,048.6 1716 2,131,145 

Walked Walk 23,929.29 57,663.42 882 543,733 

 

Empirical framework 

As mentioned earlier, isolating the causal effect of TNCs on traffic congestion is difficult 

due to the two-way causal relationship and uncontrolled confounding variable. To address 



the potential endogeneity, I deviate from the following fixed-effects regression model to 

limit selection bias and remove all time-invariant effects that vary across urban areas. 

𝑇𝑟𝑎𝑓𝑓𝑖𝑐 𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛𝑖𝑡

= 𝛼TNCs 𝑖𝑡 + 𝛽Controls 𝑖𝑡 + 𝑐𝑖 + 𝜃𝑡 + 𝜖𝑖𝑡 … … … … … … … … … … … … . (1) 

Where the units of observation i index US metropolitan areas in year t to eliminate 

unobserved variables that are specific to each sample. The TrafficCongestionit, the 

dependent variable, takes on one of the five performance measures in a metropolitan area i 

in year t.: TTI, CSI, hours of delay, excess fuel consumed, and congestion cost. TNCsit is 

specified as a dummy variable that takes the value of 0 or 1 or 2 to indicate the absence or 

presence of TNCs (Uber and Lyft) for urban area i in year t. Specifically, it takes a value of 

1 for years that have officially launched Lyft or Uber, a value of 2 for years that have 

launched both Lyft and Uber, and a value of 0 for cities that do not have TNCs. Controlsit 

indicates a set of control variables. α is the interested parameter; β is the parameter to be 

estimated. The metropolitan statistical area level fixed effects, ci and the year fixed effects, 

θt, were included in the regression to control for spatial and time-varying unobservable 

effects, respectively. εit represents the error term. The standard errors are clustered at the 

Geofips level. 

 

Identification strategies 

I seek to identify the causal effect of TNCs on traffic congestion by using two instrumental 

variables in order to account for any correlation between traffic congestion and the error 

term. The first instrument is a measure of whether individuals have smartphones. 



Specifically, people must have a smartphone to participate in ride sharing services because 

users must book these services through a smartphone app. Therefore, a measure of whether 

an individual has a smartphone is likely to have a direct effect on TNC entry and is not 

likely correlated to traffic congestion. Hence, availability of smartphones is a reasonable 

instrumental variable for TNC entry. However, the instrument is limited by data availability. 

In particular, the data is not available for 2014. While not an ideal solution, the data used in 

the current study for the year 2014 is the average of the data from 2013 and 2015. 

The second instrument is based on the measure of unemployment rate, maintained by 

the Bureau of Economic Analysis, following Li, Hong and Zhang (2017). The TNC self-

employment model motivates people to participate in ride-sharing services; therefore, 

TNCs are likely to be in high demand in areas of high unemployment but uncorrelated with 

the error term. In addition, standard errors are also clustered at the Geofips level. 

 

DID 

The last identification strategy looks at the effects of TNCs by comparing changes in traffic 

congestion across the various urban areas with TNCs’ entrance to changes in traffic 

congestion in the same time period in other American cities with no entrance, using the 

same dataset. Specifically, I estimate the impact of TNCs using the following difference-in-

difference identification strategy. 

 

𝑇𝑟𝑎𝑓𝑓𝑖𝑐 𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑖𝑡 = 𝛼𝐷𝑖𝑡∅ + 𝛽𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠 𝑖𝑡 + 𝑐𝑖 + 𝜃𝑡 + 𝜖𝑖𝑡 … … … … … … . (2) 



where Dit represents the DID effect of TNCs on traffic congestion; Controlsit is a vector of 

the explanatory variables; ∅ is the relative time dummy. Bertrand, Duflo and Mullainathan 

(2004) state the significance of using cluster-robust standard errors in DID settings. 

Accordingly, I cluster the standard errors at the Geofips level to eliminate the DID standard 

errors. 

 

3. Empirical Results 

The empirical results for each of the identification strategies are presented in Tables 4 

through 6. The columns of Tables 4 through 6 present regression estimates including the set 

of control variables from Table 3 for all the different dependent variables from Table 2. 

Tables 4 and 5 present FE estimates and FE estimates including instrumental variables, 

respectively, while Table 6 presents DID estimates. In the analyses, I controlled for factors 

affecting traffic congestion and TNCs, removing the effect of the time trend and clustering 

the standard errors at the Geofips level. 

The FE model results are presented in Table 4. The coefficient of TNCs has positive 

relations for all seven measures of congestion; however, the estimates are only marginally 

statistically significant. Moreover, there are no significant relations at the 1% level between 

TNCs and traffic congestion for the FE model. The results suggest that the entry of TNCs 

tends to increase traffic congestion, but found to have a statistically small or insignificant 

effect on traffic congestion. As discussed in the introduction, isolating the causal effect of 

TNCs on traffic congestion is challenging due to reverse causation and omitted variable 



bias. Furthermore, it is likely that the approach still suffers from endogeneity; as a result, 

this should not be interpreted as TNCs having no effect on traffic congestion. 

Table 5 repeats the regression from Table 4, including the two instrumental variables 

for TNCs to account for possible endogeneity problems. For Table 5, the estimates of TNC 

entry on congestion measures (except for TTI) are significant and positive for all measures 

of congestion. Additionally, the estimates of the effect for delay time per auto, congestion 

cost per auto, excess fuel, and per auto are statistically more significant than the estimates 

for the FE model. 

Table 6 presents the impact of TNCs across different types of traffic congestion using a 

difference-in-difference identification strategy as another method of handling the potential 

endogeneity. The coefficient of the interaction term indicates significant and positive effect 

for all the measures of traffic congestion, but smaller significant levels for delay time and 

excess fuel. These results imply that the entry of TNCs has a positive impact on traffic 

congestion, suggesting that the entry of TNCs increases traffic congestion. TNC entry can 

be seen to consistently increase traffic congestion for all measures of traffic congestion for 

all identification strategies. 

Table 4-Results for the FE model 

 Delay 

time 

 

Per auto 

Cong 

_cost 

 

Per auto 

Excess 

_Fuel 

TNCs Entry 0.0049 

(0.0025) 
 

0.005 

(0.0027) 
 

0.005* 

(0.0025) 
 

0.0049 

(0.0025) 
 

0.0049 

(0.0025) 
 

Log_gdp 0.3634*** 

(0.0669) 
 

0.3623*** 

(0.0636) 
 

0.3607*** 

(0.0671) 
 

0.3634*** 

(0.067) 
 

0.3633*** 

(0.0669) 
 

Log_income 0.2034* 0.1981* 0.2075* 0.2035* 0.2035* 



(0.0901) 
 

(0.0902) 
 

(0.0907) 
 

(0.0903) 
 

(0.0901) 
 

Log_popu 0.0964 

(0.1075) 
 

-0.2232 

(0.1140) 
 

0.0994 

(0.1075) 
 

0.0967 

(0.1076) 
 

0.0966 

(0.1075) 
 

Log_comm 0.2854** 

(0.1034) 
 

-0.384*** 

(0.1095) 
 

0.2874** 

(0.1029) 
 

0.2855** 

(0.1035) 
 

0.2855** 

(0.1034) 
 

Log_gas 0.0061 

(0.0571) 
 

-0.0129 

(0.0616) 
 

0.0086 

(0.0570) 
 

0.0055 

(0.0573) 
 

0.0063 

(0.0572) 
 

Log_diesel -0.0364 

(0.0787) 
 

-0.0190 

(0.0801) 
 

-0.0335 

(0.0764) 
 

-0.0362 

(0.0789) 
 

-0.0365 

(0.0788) 
 

Log_freeway -0.0109 

(0.016) 
 

-0.0099 

(0.0174) 
 

-0.0111 

(0.0159) 
 

-0.0113 

(0.016) 
 

-0.011 

(0.0159) 
 

Log_arterial 0.0299 

(0.0241) 
 

0.0282 

(0.0259) 
 

0.0315 

(0.0242) 
 

0.0308 

(0.0241) 
 

0.0299 

(0.0240) 
 

Public_trans 0.0000 

(0.0000) 
 

0.0000 

(0.0000) 
 

0.0000 

(0.0000) 
 

0.0000 

(0.0000) 
 

0.0000 

(0.0000) 
 

No vehicles -0.0000** 

(0.0000) 
 

-0.0000* 

(0.0000) 
 

-0.0000** 

(0.0000) 
 

-0.0000** 

(0.0000) 
 

-0.0000** 

(0.0000) 
 

Walked -0.0000 

(0.0000) 
 

-0.0000 

(0.0000) 
 

-0.0000 

(0.0000) 
 

-0.0000 

(0.0000) 
 

-0.0000 

(0.0000) 
 

N 567 567 567 567 567 

R2 .8321 .6037 .4541 .4540 .8322 

 (Prob>F) 0.000 0.000 0.000 0.000 0.000 

Notes: Robust standard error in parentheses; clustered by Geofips. 

(Significance levels: *: p<0.05, **: p<0.01, ***: p<0.001) 

Negative sign indicates a decline in traffic congestion;  

positive sign indicates negative contribution to traffic congestion 

 

Table 5-Results for the IV model 

 Delay 

time 

Per auto Cong 

_cost 

Per auto Excess 

_Fuel 

TNCs Entry 0.1352** 

(0.0482) 
 

0.1007* 

(0.0438) 
 

0.1091* 

(0.0427) 
 

0.0899* 

(0.0363) 
 

0.1739*** 

(0.0517) 
 

Log_gdp 0.0633 

(0.1364) 
 

0.1208 

(0.1224) 
 

-0.0041 

(0.1013) 
 

0.0325 

(0.0856) 
 

-0.0260 

(0.1349) 
 



Log_income 0.1172 

(0.2787) 
 

0.0579 

(0.23) 
 

0.124 

(0.2648) 
 

0.0257 

(0.2056) 
 

0.0296 

(0.3336) 
 

Log_popu 0.1455 

(0.6204) 
 

0.3920 

(0.4697) 
 

0.3224 

(0.6007) 
 

0.5357 

(0.4245) 
 

0.5678 

(0.7257) 
 

Log_comm 0.2924 

(0.63016) 
 

-0.7989 

(0.48618) 
 

0.2028 

(0.60873) 
 

-0.8594* 

(0.43697) 
 

-0.0752 

(0.75197) 
 

Log_gas -0.53396 

(0.72122) 
 

-0.65200 

(0.63941) 
 

-0.59162 

(0.67792) 
 

-0.59225 

(0.57152) 
 

-1.00175 

(0.89140) 
 

Log_diesel 0.80182 

(0.74037) 
 

0.78138 

(0.68154) 
 

0.67938 

(0.68876) 
 

0.66202 

(0.60236) 
 

1.09103 

(0.82702) 
 

Log_freeway 0.09229 

(0.11155) 
 

0.08558 

(0.09979) 
 

0.10018 

(0.09511) 
 

0.11819 

(0.08128) 
 

0.04602 

(0.12441) 
 

Log_arterial 0.51784*** 

(0.14044) 
 

0.40486*** 

(0.12243) 
 

0.46655*** 

(0.13826) 
 

0.34706** 

(0.12729) 
 

0.50588** 

(0.18174) 
 

Public_trans 0.000 

(0.000) 
 

0.000 

(0.000) 
 

0.000 

(0.000) 
 

0.000 

(0.000) 
 

-0.000 

(0.000) 
 

No vehicles -0.000 

(0.000) 
 

-0.000* 

(0.000) 
 

-0.000 

(0.000) 
 

-0.000* 

(0.000) 
 

-0.000 

(0.000) 
 

Walked 0.00001 

(0.000) 
 

0.000 

(0.000) 
 

0.00001* 

(0.000) 
 

0.00001 

(0.000) 
 

0.00001 

(0.00001) 
 

N 295 295 295 295 295 

R2 .9578 .6441 .9587 .6306 .9275 

(Prob>chi2) 0.0000 0.0000 0.0000 0.0000 0.0000 

Notes: Robust standard error in parentheses; clustered by Geofips. 

(Significance levels: *: p<0.05, **: p<0.01, ***: p<0.001) 

Negative sign indicates a decline in traffic congestion;  

positive sign indicates negative contribution to traffic congestion 

 

Table 6-Results for DID model 

 Delay 

time 

Per auto Cong 

_cost 

Per auto Excess 

_Fuel 

TNCs Entry 0.0101* 

(0.0041) 
 

0.0091* 

(0.0037) 
 

0.0089* 

(0.0037) 
 

0.0089* 

(0.0037) 
 

0.0147** 

(0.0049) 
 

Log_gdp 0.3645*** 0.3636*** 0.3662*** 0.3661*** 0.378*** 



(0.0633) 
 

(0.0671) 
 

(0.067) 
 

(0.0669) 
 

(0.0835) 
 

Log_income 0.195* 

(0.0905) 
 

0.2033* 

(0.0913) 
 

0.1994* 

(0.0908) 
 

0.1995* 

(0.0907) 
 

0.2681* 

(0.1075) 
 

Log_popu -0.23* 

(0.1132) 
 

0.0932 

(0.1075) 
 

0.0906 

(0.1075) 
 

0.0906 

(0.1074) 
 

0.0835 

(0.1335) 
 

Log_comm -0.373*** 

(0.1073) 
 

0.2973** 

(0.1023) 
 

0.2952** 

(0.1028) 
 

0.2952** 

(0.1027) 
 

0.311* 

(0.1304) 
 

Log_gas -0.0132 

(0.0617) 
 

0.0089 

(0.0573) 
 

0.0058 

(0.0575) 
 

0.0066 

(0.0574) 
 

0.0281 

(0.0820) 
 

Log_diesel -0.0153 

(0.0799) 
 

-0.0309 

(0.076) 
 

-0.0337 

(0.0785) 
 

-0.034 

(0.0784) 
 

0.0649 

(0.0873) 
 

Log_freeway -0.0114 

(0.0176) 
 

-0.0123 

(0.0162) 
 

-0.0125 

(0.0163) 
 

-0.0121 

(0.0163) 
 

0.0045 

(0.0215) 
 

Log_arterial 0.0303 

(0.0263) 
 

0.0338 

(0.0247) 
 

0.0331 

(0.0246) 
 

0.0322 

(0.0246) 
 

0.0196 

(0.0356) 
 

Public_trans 0.000 

(0.000) 
 

0.000 

(0.000) 
 

0.000 

(0.000) 
 

0.000 

(0.000) 
 

0.000 

(0.000) 
 

No vehicles -0.000* 

(0.000) 
 

-0.000** 

(0.000) 
 

-0.000** 

(0.000) 
 

-0.000** 

(0.000) 
 

-0.000 

(0.000) 
 

Walked -0.000 

(0.000) 
 

-0.000 

(0.000) 
 

-0.000 

(0.000) 
 

-0.000 

(0.000) 
 

-0.000 

(0.000) 
 

N 567 567 567 567 567 

R2 .6058 .4557 .4555 .8327 .7218 

(Prob>F) 0.000 0.000 0.000 0.000 0.000 

Notes: Robust standard error in parentheses; clustered by Geofips. 

(Significance levels: *: p<0.05, **: p<0.01, ***: p<0.001) 

Negative sign indicates a decline in traffic congestion;  

positive sign indicates negative contribution to traffic congestion 

 

Robustness check 

Eighty-one percent of the nation’s total cost associated with traffic congestion, such as 

delays and fuel consumption, was expected from densely populated areas (Cortright, 2010). 



Nearly 70% of Uber and Lyft ridership is concentrated in nine large and densely populated 

metropolitan areas, according to Schaller (2018). Following Yelowitz (1995), this section 

provides a third dimension, population group, in addition to urban area and year of TNC 

entry. The triple-differences model generates additional insightful analysis to the general 

DID analysi (Angrist and Pischke, 2008). 

    Table 7 provides the empirical results, in which the sample size is restricted by those 

metropolitan areas with populations over one million, classified as “large” from the dataset 

used for the main analysis. The results are found to be significant and positive in terms of 

the effect of TNCs on delay time, congestion cost, and excess fuel among largely populated 

areas. The significance levels of the estimates indicate that the TNCs become problematic 

for the trend of traffic congestion. Moreover, the coefficients on TNCs are larger in 

magnitude than the aggregate data. 

 

Table 7- Urban Areas with groups of “large” population 

 Delay 

time 

Per 

auto 

Cong 

_cost 

Per 

auto 

Excess 

_Fuel 

TNCs Entry 0.01467** 

(0.00415) 
 

0.01419* 

(0.00541) 
 

0.01467** 

(0.00417) 
 

0.01471** 

(0.00413) 
 

0.01467** 

(0.00415) 
 

Other 

controls 

Y Y Y Y Y 

N 180 180 180 180 180 

R2 .9048 .7213 .6501 .6481 .9048 

 (Prob>F) 0.000 0.000 0.000 0.000 0.000 

Notes: Robust standard error in parentheses; clustered by Geofips. 

(Significance levels: *: p<0.05, **: p<0.01, ***: p<0.001) 



4. Conclusion 

This paper reports on the findings of the causal impact of TNC entry on traffic congestion, 

which warrants further elaboration. I examined the roles of TNCs on different measures of 

traffic congestion, extending the analysis regressions to reduce the endogeneity bias. To 

confirm that the increase in traffic congestion was caused by TNCs rather than other factors, 

I made use of instrumental variables, employed a difference-in-difference identification 

strategy while removing time-invariant effects that vary across urban areas, and included a 

set of explanatory variables.  

The empirical results for all key coefficients of interest were positive for all strategies, 

denoting that the arrival of TNCs generates more traffic congestion. To assess the 

robustness of the preceding results, I repeated the analysis using datasets that corresponded 

to those metropolitan areas classified as large instead of examining all metropolitan areas. 

In accordance with the findings in Tables 4 through 6, the results point to a significant and 

negative contribution to traffic congestion. 

The findings may reveal some insights into the ongoing debate; however, as stated 

earlier, they have limitations in several dimensions given the limitations of available data. 

For instance, Uber was introduced for the first time in 2011 in San Francisco; however, it 

takes time for people to actually use such new types of services. This disproportionality 

may influence the representativeness of the entry of TNCs. Moreover, the main dataset 

from Texas A&M Institute aggregates at an annual level and covers only up to the year 

2014. Thus, it is difficult to examine the long-term effects of TNCs. Lastly, identifying 



strong and valid instrumental variables that have a direct effect on the entry of TNCs but 

not on traffic congestion is extremely difficult.  

While environmental factors are outside of the control, it would be interesting for future 

research to use a longer timespan’s dataset of traffic congestion in the post-TNC time 

period and to use more representative TNC data. 
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