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Abstract 
 

Two models for individual decisions on vaccination under incomplete information, which 

poses uncertainty and information asymmetry, have been presented in this thesis. In the state-

preference model, the vaccine plays a role of insurance against the disease. It suggests that the 

interaction between actuarial fairness of the vaccine and risk aversion of the agent commands her 

vaccination decision. The more actuarially advantageous the vaccine is and the more risk-averse 

the agent’s personality is, the more likely the agent will purchase the vaccine. The signaling 

game model shows that an individual buyer of the vaccine builds up her belief of the vaccine’s 

quality by observing the signal sent by the producer, in this case, the type of technology. The 

producer’s pooling and separating strategies may result in perfect Bayesian equilibria with 

conditions that bound the buyer’s belief and the producer’s incentive to deviate from the initial 

strategy.  
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I. Introduction 

 

Vaccination has been considered one of the best measures to mitigate adverse effects of 

many contagious diseases. According to the World Health Organization (WHO), vaccination is 

“the best method for prevention and control of influenza” (Houser & Subbarao, 2015). The 

Centers for Disease Control and Prevention of the United States also acknowledges vaccination 

as the very means to have freed the U.S. from the polio epidemic (Centers for Disease Control 

and Prevention, 2018). As of 2021, vaccines “prevent more than 20 life-threatening diseases”, 

and 2-3 million lives are saved every year due to immunization in consequence of vaccination 

(World Health Organization, 2021).  

Despite the evidenced efficacy, however, public sentiments doubting the effectiveness 

and safety of vaccines are widespread, especially as far as vaccination against a novel contagious 

disease is concerned, primarily due to the shortage of information on the disease and pathogen 

(Kennedy, 2019). The disease has too many unknown properties that have yet to be found. They 

take many different forms, such as an outbreak of variation in the disease, undiscovered 

symptoms, fatality, etc. In addition to these unknown properties, fundamentally, it is impossible 

to predict with certainty whether a particulr individual would be infected and must vaccinate 

herself even if the probability distribution of the risk of infection is well-known. Thus, it is not 

entirely irrational that an individual hesitates to get vaccinated.    

These difficulties can be aggravated by an uneven distribution of the information crucial 

on making a decision on the purchase of vaccines between buyers and producers. A vaccine 

producer may have information which is unknown to potential buyers even though knowing that 

information can significantly affect their decision. For example, the quality of a vaccine is 
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private information held by the producer before her products are rolled out unless the disclosure 

of the information is required. Without the quality assured, buyers may make suboptimal 

decisions such as delayed decisions, the purchase of subprime products, no purchase at all, etc. 

The problem of ‘lemons’ illustrated by Akerlof (1970) can exist in the vaccine market.  

This thesis investigates the difficulties in individual vaccination decision through the lens 

of the state preference approach and signaling game models. Section II provides a review of the 

existing literature on uncertainty and information asymmetry and definitions of main terms used 

through this thesis. Section III is divided into two parts. In Part A, mainly, the state preference 

approach is applied to demonstrate the behaviour of vaccine buyers when uncertainty arises from 

the shortage of information on the disease. In Part B, a signaling game model is constructed to 

show how the buyer and the producer would interact in the setting of information asymmetry in 

favour of the producer. Section IV addresses problems identified in Section III. Section V 

provides concluding remarks.                  

 

II. Literature Review 

 

This thesis is extended from studies on optimal choice under uncertainty and information 

asymmetry. Analytical frameworks are based on the expected utility hypothesis and Bayesian 

games approach. Those studies show how ‘rational’ economic agents respond to uncertainty and 

information asymmetry and what consequences would be led by their responses. 

Uncertainty in this thesis is defined as the “subjective probability distribution” of ‘risk’ 

(Kohn, Uncertainty in Economics, 2017, p. 4). In other words, uncertainty arises because an 
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individual economic agent lacks precise information on the underlying event that would 

potentially harm her utility while she has a faith to some degree that this event would or would 

not take place (Smith, Benson, & Curley, 1991). Thus, her utility takes a form of a random 

variable whose values are assigned by the probability distribution constructed based on her 

incomplete knowledge of the event bearing the potential harm, i.e., ‘risk’. 

A risk-bearing event is often compared to an investment opportunity that would make 

returns, i.e., profit or loss, depending on the outcomes of the investment following the agent’s 

subjective probability distribution (Friedman & Savage, 1948). The agent would pursue to 

maximize the expected utility, which is defined as the probability-weighted sum of utilities from 

her wealth. The expected utility is equal to or more or less than the utility from the certainty 

equivalent of wealth, depending on her preference for risk. A risk-neutral agent will surely yield 

the expected utility from the expected wealth; a risk-loving agent will need more than the 

expected wealth to obtain the expected utility; and a risk-averse agent will require less than the 

expected wealth to yield the expected utility (Hirshleifer, 1965).   

Thanks to this setting, the optimal allocation of an individual’s wealth between the 

different states can be analyzed as conventional utility maximization problems (Arrow, 1964). 

The value of her wealth is altered depending on states, and the probability assigned to one state’s 

occurring is equivalent to the price of wealth in this state. Probabilities are assigned to different 

states, and these probabilities also serve as prices of her wealth in different states. Expected 

wealth, which is nothing but a probability-weighted sum of wealth at different states, is 

equivalent to the budget constraint. An optimal allocation of one’s wealth between the states is 
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found by solving the expected utility maximization subject to the expected wealth (Nicholson & 

Snyder, 2008, pp. 216-221).   

Uncertainty described above is assumed to be caused by a lack of information which 

evenly occurs to all the parties involved in the economic transaction in question. However, 

uncertainty may also arise from ‘information asymmetry’, which occurs when one party has 

information that other parties do not know and attempts to benefit from its advantage in the 

information. Two kinds of problems caused by information asymmetry are mainly discussed in 

economic accounts (Mishkin & Serletis, 2011, pp. 32-33). First, the problem known as moral 

hazard occurs when one party takes advantage of the other party by hiding its behaviour after the 

economic transaction in question. Second, the problem known as adverse selection occurs when 

one party benefits from the other party’s expense by hiding its type before the economic 

transaction in question. Especially, this thesis focuses on adverse selection, the problem of the 

information asymmetry caused by hidden type.     

The behavioural patterns of economic agents in the presence and mitigation of adverse 

selection are well addressed in ‘signaling games’ (Spence, 1973). A worker’s productivity is 

usually unknown unless she is employed to prove her performance at work. There are both 

productive workers and unproductive workers in the labour market, but the employer cannot 

observe their productivity unless they are already hired. Once they are hired, the employer must 

pay the amount as promised in the employment contract regardless of their productivity. The 

worker may turn out to be productive or may not, but the employer’s return on hiring may not be 

satisfactory unless she has randomly hired productive workers. To avoid this conundrum, the 

employer offers higher than what productive workers are supposed to receive but instead 
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requires candidates to show a certificate of qualification or education relevant to the job as a 

signal that she is qualified for the job. Since it is costly for workers to have such a qualification, 

only those who believe it is worth obtaining the qualification will get the qualification and apply 

for the job. As a result, the employer will be able to maintain reasonable returns on hiring.  

To make a rigorous analysis in signaling games, economists heavily owe to the Bayesian 

statistics (Tadelis, 2013). The employer’s belief in the job candidate’s hidden type ሺ𝜃ሻ, i.e., 

productivity, is presented as the probability of 𝜃 conditional on her observing the signal sent 

from the other ሺ𝑆ሻ such as 𝑃𝑟ሺ𝜃|𝑆ሻ. It is constructed from the Bayesian theorem: 𝑃𝑟ሺ𝜃|𝑆ሻ ൌ

௉௥ሺఏሻ୔୰ ሺௌ|ఏሻ

௉௥ሺௌሻ
. Then, the employer’s belief that the candidate does not fall under 𝜃 when 𝑆 is 

observed is 1 െ 𝑃𝑟ሺ𝜃|𝑆ሻ. By calculating the employer’s expected payoffs using these beliefs, the 

employer’s best responses are found. Finally, the outcome of the signal sent by the candidate 

needs to be consistent with her best interest given the employer’s best responses. With all those 

conditions met, a perfect Bayesian equilibrium is reached.   

 

III. Theoretical Framework 

 

A. Vaccine Purchase Decision under Uncertainty 

 

1) Basic Settings 

 

Let’s assume that a rational economic agent who generates utilities by consuming her 

wealth 𝑤. The agent falls under either of two genetic types referred to as 𝑡 ∈ ሼ𝑏, 𝑔ሽ, where 𝑏 
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means ‘infected’ and 𝑔 means ‘not infected’. It is assumed that and that the genetic type 

determines whether one gets infected with the disease. In other words, without any preventive 

measure, type 𝑏 would certainly be infected and type 𝑔 would surely not be infected. However, 

the agent does not know her type unless she actually gets infected. These assumptions allow the 

agent’s type to follow a binomial probability distribution:  

𝑃𝑟ሺ𝑡ሻ ൌ ൜
𝑃𝑟ሺ𝑏ሻ ൌ 𝑝;      
𝑃𝑟ሺ𝑔ሻ ൌ 1 െ 𝑝.

 (1)

There is no viable cure for the disease, but a vaccine is introduced to prevent infection. 

The role of the vaccine is similar to an insurance in that it will secure one’s wealth against an 

unfortunate event, in this case, infection of the disease1. To see whether vaccination would make 

any difference in the agent’s welfare, a superscript 𝑖 ∈ ሼ0,1ሽ is added when necessary: 0 if the 

agent is not vaccinated and 1 if the agent is vaccinated.  

The agent’s wealth takes a form of a ‘contingent commodity’ because its value depends 

on states of the world, in this case, the agent’s type. The agent is initially endowed with 𝑤଴, but 

her wealth soon depends on her type: 𝑤௕ if she is type 𝑏 and 𝑤௚ if she is type 𝑔. Without the 

vaccine, her wealth for each type is:  

𝑤௧
଴ ൌ ቊ

𝑤௕
଴ ൌ 𝑤଴ െ 𝐿

𝑤௚
଴ ൌ 𝑤଴        

 (2)

where 𝐿 refers to the loss due to the disease, such as hospitalization costs or the decrease in 

income owing to workday loss. With vaccination, the agent’s wealth for each type is calculated:  

                                                            
1 Of course, there should be some crucial differences between an insurance and a vaccine. First, an insurance usually 
covers the damage that has already occurred while a vaccine protects one from a contagious disease before she gets 
infected. Second, the insured amount is determined on the contract before the damage is realized while the 
effectiveness of the vaccine is identified after the subjects are inoculated. 
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𝑤௧
ଵ ൌ ቊ

𝑤௕
ଵ ൌ 𝑤଴ െ 𝐿 െ 𝑞𝐴 ൅ 𝐴

𝑤௚
ଵ ൌ 𝑤଴ െ 𝑞𝐴                

     for 𝐴 ൑ 𝐿, (3)

where 𝐴 refers to the dollar value of the vaccine effectiveness and 𝑞 refers to the premium on the 

one-dollar value of the vaccine effectiveness. The effectiveness or the benefit of the vaccine 𝐴 is 

not greater than the loss of infection 𝐿 because the role of the vaccine is not to improve one’s 

health but to prevent infection. Thus, the agent’s wealth corresponding to each type, if she is 

vaccinated, must be 𝑤௕
ଵ ∈ ሾ𝑤଴ െ 𝐿, 𝑤଴ െ 𝑞𝐿ሿ and 𝑤௚

ଵ ∈ ሾ𝑤଴ െ 𝑞𝐿, 𝑤଴ሿ.  

 

2) Expected Utility Improvement by Vaccination 

 

It is obvious that the agent would be vaccinated only because it would improve her 

welfare, which is measured in her utility. The utility function is given by 𝑢ሺ𝑤ሻ ൌ 𝑤ఈ for 𝛼 ൐ 0.  

As uncertainty arises from infection of the disease, it is reasonable to assume that the agent 

would maximize the expected utility, which takes a form of the probability-weighted sum of 

utilities of 𝑤௕ and 𝑤௚, respectively: 

𝑣൫𝑤௕, 𝑤௚൯ ൌ 𝑝𝑢ሺ𝑤௕ሻ ൅ ሺ1 െ 𝑝ሻ𝑢൫𝑤௚൯ ൌ 𝑝𝑤௕
ఈ ൅ ሺ1 െ 𝑝ሻ𝑤௚

ఈ (4)

Its marginal rate of substitution of 𝑤௕ for 𝑤௚ is computed as follows: 

𝑀𝑅𝑆௕,௚ ൌ െ
𝑑𝑤௚

𝑑𝑤௕
ൌ

𝜕𝑣
𝜕𝑤௕
𝜕𝑣

𝜕𝑤௚

ൌ
𝑝

1 െ 𝑝
∙

𝑢ᇱሺ𝑤௕ሻ

𝑢ᇱ൫𝑤௚൯
ൌ

𝑝
1 െ 𝑝

∙ ൬
𝑤௚

𝑤௕
൰

ଵିఈ

, (5)

It is clear that the expected utility is generated by consuming within her budget constraint 

(BC), which is derived from (3) as follows: 
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⎩
⎨

⎧𝑤௕ െ 𝑤଴ ൅ 𝐿 ൌ ሺ1 െ 𝑞ሻ𝐴 ⟹ 𝐴 ൌ
𝑤௕ െ 𝑤଴ ൅ 𝐿

1 െ 𝑞

𝑤௚ െ 𝑤଴ ൌ െ𝑞𝐴        ⟹ 𝐴 ൌ െ
𝑤௚ െ 𝑤଴

𝑞

⟹ െ
𝑤௚ െ 𝑤଴

𝑞
ൌ

𝑤௕ െ 𝑤଴ ൅ 𝐿
1 െ 𝑞

 

⟹ 𝑤௚ െ 𝑤଴ ൌ െ
𝑞

1 െ 𝑞
ሺ𝑤௕ െ 𝑤଴ ൅ 𝐿ሻ, (6)

which can be re-arranged as:  

𝑞𝑤௕ ൅ ሺ1 െ 𝑞ሻ𝑤௚ ൌ 𝑤଴ െ 𝑞𝐿. (7)

Equation (6) and (7) suggests that any pair of 𝑤௕ ∈ ሾ𝑤଴ െ 𝐿, 𝑤଴ െ 𝑞𝐿ሿ and 𝑤௚ ∈ ሾ𝑤଴ െ 𝑞𝐿, 𝑤଴ሿ is 

attainable as long as the agent consumes within 𝑤଴ െ 𝑞𝐿.  

Typically, the expected utility would be maximized if 𝑀𝑅𝑆௕,௚ ൌ
௤

ଵି௤
, and then 

൫𝑤௕
ଵ, 𝑤௚

ଵ൯ ൌ ሺ𝑤଴ െ 𝑞𝐿, 𝑤଴ െ 𝑞𝐿ሻ, i.e., vaccination, would be her choice. However, it can be 

falsified if ൫𝑤௕
଴, 𝑤௚

଴൯ yields greater expected utility than ൫𝑤௕
ଵ, 𝑤௚

ଵ൯. To find whether vaccination 

actually leads to improvement in the expected utility, in application of Taylor expansion, the 

expected utility function valuated at ൫𝑤௕
଴, 𝑤௚

଴൯ and ൫𝑤௕
ଵ, 𝑤௚

ଵ൯ is examined as follows: 

𝑣൫𝑤௕
଴, 𝑤௚

଴൯ ൌ 𝑝ሺ𝑤଴ െ 𝐿ሻఈ ൅ ሺ1 െ 𝑝ሻ𝑤଴
ఈ

ൎ 𝑝 ቈ𝑤଴
ఈ ൅ 𝛼𝑤଴

ఈିଵሺെ𝐿ሻ ൅
𝛼ሺ𝛼 െ 1ሻ

2
𝑤଴

ఈିଶሺെ𝐿ሻଶ ൅ 𝑅ሺെ𝐿ሻ቉ ൅ ሺ1 െ 𝑝ሻ𝑤଴
ఈ  

ൌ 𝑤଴
ఈ െ 𝑝𝛼𝐿𝑤଴

ఈିଵ െ
𝑝𝛼ሺ1 െ 𝛼ሻ𝐿ଶ

2
𝑤଴

ఈିଶ ൅ 𝑝𝑅ሺെ𝐿ሻ. 

 
(8)

𝑣൫𝑤௕
ଵ, 𝑤௚

ଵ൯ ൌ 𝑝ሺ𝑤଴ െ 𝑞𝐿ሻఈ ൅ ሺ1 െ 𝑝ሻሺ𝑤଴ െ 𝑞𝐿ሻఈ ൌ ሺ𝑤଴ െ 𝑞𝐿ሻఈ

ൎ 𝑤଴
ఈ ൅ 𝛼𝑤଴

ఈିଵሺെ𝑞𝐿ሻ ൅
𝛼ሺ𝛼 െ 1ሻ

2
𝑤଴

ఈିଶሺെ𝑞𝐿ሻଶ ൅ 𝑅ሺെ𝑞𝐿ሻ

ൌ 𝑤଴
ఈ െ 𝑞𝛼𝐿𝑤଴

ఈିଵ െ
𝑞ଶ𝛼ሺ1 െ 𝛼ሻ𝐿ଶ

2
𝑤଴

ఈିଶ ൅ 𝑅ሺെ𝑞𝐿ሻ, 
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where 𝑅 refers to higher order terms, which are assumed to be negligible. This comparison 

reveals that vaccination would be determined by combination of the expected net benefit 

(whether 𝑝 ൌ 𝑞, 𝑝 ൏ 𝑞, or 𝑝 ൐ 𝑞) and preference for risk (whether 𝑎 ൌ 1, 𝛼 ൏ 1, or 𝛼 ൐ 1). It 

requires consideration of actuarial fairness of the vaccine and risk aversion of the agent.      

Actuarial fairness concerns whether the agent’s decision would yield the expected benefit 

greater than the cost of the decision. The expected benefit ሺ𝑝𝐴ሻ must equal the cost of the 

vaccine ሺ𝑞𝐴ሻ, more simply put, 𝑝 ൌ 𝑞 if the vaccine is actuarially fair; 𝑝 ൐ 𝑞 if the vaccine is 

actuarially advantageous; and 𝑝 ൏ 𝑞 if the vaccine is actuarially disadvantageous. Allowing for 

this property, a relationship between 𝑤௕ and 𝑤௚, which is referred to as the ‘fair odds line’ 

(FOL), is derived from the expected value of wealth as follows:   

𝐸ሺ𝑤଴ሻ ൌ 𝑝𝑤௕
଴ ൅ ሺ1 െ 𝑝ሻ𝑤௚

଴ ൌ 𝑝ሺ𝑤଴ െ 𝐿ሻ ൅ ሺ1 െ 𝑝ሻ𝑤଴ ൌ 𝑤଴ െ 𝑝𝐿 ൅ ሺ𝑝 െ 𝑞ሻ𝐴.  

⟹ 𝑤௚
଴ െ 𝑤଴ ൌ െ

𝑝
1 െ 𝑝

ሺ𝑤௕
଴ െ 𝑤଴ ൅ 𝐿ሻ 

 

𝐸ሺ𝑤ଵሻ ൌ 𝑝𝑤௕
ଵ ൅ ሺ1 െ 𝑝ሻ𝑤௚

ଵ ൌ 𝑝ሺ𝑤଴ െ 𝐿 െ 𝑞𝐴 ൅ 𝐴ሻ ൅ ሺ1 െ 𝑝ሻሺ𝑤଴ െ 𝑞𝐴ሻ

ൌ 𝑤଴ െ 𝑝𝐿 ൅ ሺ𝑝 െ 𝑞ሻ𝐴.  

⟹ 𝑤௚
ଵ െ 𝑤଴ ൌ െ

𝑝
1 െ 𝑝

ሺ𝑤௕
ଵ െ 𝑤଴ ൅ 𝐿ሻ ൅

𝑝 െ 𝑞
1 െ 𝑝

𝐴. (9) 

where 𝐸ሺ𝑤଴ሻ refers to the expected wealth if the agent decides to remain vaccinated and 𝐸ሺ𝑤ଵሻ 

refers to the expected wealth if the agent decides to be vaccinated. Especially, 𝐸ሺ𝑤ଵሻ implies 

that the slope of the FOL is identical to that of the BC if the vaccine is actuarially fair, i.e., 𝑝 ൌ

𝑞; the FOL runs steeper than the BC if the vaccine is actuarially advantageous while the BC runs 

steeper than the FOL if the vaccine is actuarially disadvantageous. The FOL lies along 



11 
 

൫𝑤௕, 𝑤௚൯ ൌ ሺሾ𝑤଴ െ 𝐿, ሽ, ሼ, 𝑤଴ሿሻ because it is unimaginable that even the type 𝑏 agent is unable to 

consume at least 𝑤଴ െ 𝐿 and that even a type 𝑔 agent is able to consume at most 𝑤଴.     

The exponent 𝛼 represents the degree of the agent’s risk aversion. Generally, the smaller 

𝛼, the more risk-averse is the agent; for simplicity, 𝛼 ൌ 1, 0 ൏ 𝛼 ൏ 1 and 𝛼 ൐ 1 correspond to 

risk-neutral, risk-averse and risk-loving personality, respectively. It determines the curvature of 

the indifference curve. If the agent is risk-neutral, the indifference curve is linear; if the agent is 

risk-averse, the indifference curve is convex to the origin; and if the agent is risk-loving, the 

indifference curve is concave to the origin.  

More importantly, risk aversion relates her preference for certainty. Assuming that the 

vaccine holds one’s expected wealth constant, i.e., 𝑤௕ ൌ 𝑤௚, a risk-neutral individual will feel 

indifferent between buying the vaccine and not buying the vaccine; a risk-averse individual will 

prefer buying the vaccine; a risk-loving individual will prefer not buying the vaccine. The 

relation 𝑤௕ ൌ 𝑤௚ appears as a 45-degree line on the indifference map called the risk-free line 

(RFL). The closer to the RFL, the more risk averse is the agent, holding other conditions fixed. 

The RFL also represents the property that the loss due to the disease equals the benefit of the 

vaccine, which is derived from Equation (3):  

൜
𝑤௕ ൌ 𝑤଴ െ 𝐿 െ 𝑞𝐴 ൅ 𝐴
𝑤௚ ൌ 𝑤଴ െ 𝑞𝐴            ⟹ 𝑤଴ െ 𝐿 െ 𝑞𝐴 ൅ 𝐴 ൌ 𝑤଴ െ 𝑞𝐴 

∴ 𝐴 ൌ 𝐿 

(10)

In other words, the agent will obtain a certain amount of wealth over the RFL because the 

vaccine will eliminate uncertainty caused by the disease.   
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a) ‘Actuarially Fair’ Vaccine ሺ𝒑 ൌ 𝒒ሻ  

 

Figure 1 to Figure 3 demonstrates how the agent behaves when the vaccine is actuarially 

fair. The BC and FOL overlaps with the slope of െ ௤

ଵି௣
ൌ െ ௣

ଵି௣
 along ൫𝑤௕, 𝑤௚൯ ൌ

ሺሾ𝑤଴ െ 𝐿, 𝑤଴ െ 𝑝𝐿ሿ, ሾ𝑤଴ െ 𝑞𝐿, 𝑤଴ሿሻ. The fully effective vaccine, which allows 𝐴 ൌ 𝐿, will fix the 

agent’s wealth at 𝑤଴ െ 𝑝𝐿, regardless of her genetic type. In other words, the agent must give up 

𝑝𝐿 to be assured of a certain amount of wealth 𝑤଴ െ 𝑝𝐿.    

Figure 1 indicates that a risk-neutral individual will be indifferent between buying the 

vaccine and not buying the vaccine as long as her expected wealth is maintained at 𝑤଴ െ 𝑞𝐿. Her 

actual wealth may rise over or fall below 𝑤଴ െ 𝑝𝐿, but she does not find it more or less attractive 

to choose any ൫𝑤௕, 𝑤௚൯ between E0 and E1. The agent may pay nothing to purchase any vaccine 

(E0); She may pay 𝑝𝐿 to purchase a fully effective vaccine (E1); or she may pay more than zero 

and less than 𝑝𝐿 to purchase a mediocre vaccine whose effectiveness is less than 𝐴 (E2). 

However, all these different choices will result in the same expected utility.         

Figure 1. The risk‐neutral agent with actuarially fair vaccine. 
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Figure 2 shows that a risk-averse individual will purchase a fully effective vaccine. Even 

though her expected wealth remains the same anywhere between E0 and E1, she will pursue a 

certain amount of wealth, 𝑤଴ െ 𝑝𝐿, which requires her to purchase a fully effective vaccine (E1). 

Since she prefers certainty to uncertainty, moving from E0 to E1 will improve her expected 

utility. She is willing to pay 𝑝𝐿 to purchase a fully effective vaccine; any other choice than E1 

that would result in lower welfare will be ruled out.   

 Figure 3 demonstrates why a risk-loving individual will not purchase the vaccine at all 

when the vaccine is actuarially fair. Even though the agent’s expected wealth remains the same 

anywhere between E0 and E1, she will bet on herself being type 𝑔, which may actually earn her 

𝑤଴, greater wealth than 𝑤଴ െ 𝑝𝐿. Thus, not buying a vaccine (E0) will yield greater expected 

utility than buying the vaccine (E1).  

Figure 2. The risk‐averse agent with actuarially fair vaccine. Figure 3. The risk‐loving agent with actuarially fair vaccine.
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b) ‘Actuarially Advantageous’ Vaccine ሺ𝒑 ൐ 𝒒ሻ   

 

Figure 4 to Figure 7 represents the agent’s behaviour when the vaccine is actuarially 

advantageous. The FOL runs steeper than the BC, meaning 
௤

ଵି௤
൏

௣

ଵି௣
. Especially, the FOL runs 

over the BC beyond ൫𝑤௕, 𝑤௚൯ ൌ ሺ𝑤଴ െ 𝑞𝐿, 𝑤଴ െ 𝑞𝐿ሻ, which suggests that the vaccine will raise 

the agent’s expected wealth over the budget because its expected benefit is greater than its cost. 

If the vaccine is fully effective, her wealth will be kept at 𝑤଴ െ 𝑞𝐿, regardless of her genetic 

type. In other words, the agent must give up 𝑞𝐿 to make sure her wealth at 𝑤଴ െ 𝑞𝐿.  

Figure 4 and Figure 5 show that a risk-averse individual as well as a risk-neutral 

individual will purchase a fully effective vaccine. It is obvious that the risk-neutral agent will 

choose the fully effective vaccine because the wealth in E1 is greater than in E0. It is also 

welfare-improving for a risk-averse individual to consume at E1 because her wealth at E1 is not 

only greater than in E0 but also certain. Thus, both the risk-neutral agent and the risk-averse 

agent are willing to pay 𝑞𝐿 to obtain a certain amount of wealth 𝑤଴ െ 𝑞𝐿. 

Figure 4. Risk‐neutral agent with actuarially 
advantageous vaccine 

Figure 5. Risk‐averse agent with actuarially 
advantageous vaccine 
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Figure 6 and Figure 7 show that the agent is led to different consequences depending on 

the degree of her preference for risk. Figure 6 demonstrates that a risk-loving individual with the 

relatively weak preference for risk may purchase the fully effective vaccine. Even though the 

agent prefers risk to certainty compared to risk-neutral or risk-averse individuals, her preference 

for risk may not be great enough to induce her to take risk instead of a certain amount of wealth. 

Then, she may find the vaccine attractive and be willing to pay 𝑞𝐿 to purchase the vaccine. On 

the other hand, a risk-loving individual with the relatively strong preference for risk will not 

purchase the vaccine at all as illustrated in Figure 7. For her, it is worth taking risk betting on 

herself being type 𝑔, expecting 𝑤଴ to be earned and yielding greater expected utility than 

otherwise.    

 

c) ‘Actuarially Disadvantageous’ Vaccine ሺ𝒑 ൏ 𝒒ሻ 

 

Figure 8 to Figure 11 illustrates the agent’s choice when the vaccine is ‘actuarially 

disadvantageous.’ The BC runs steeper than the FOL, i.e., 
௤

ଵି௤
൐

௣

ଵି௣
. Especially, the FOL runs 

below the BC beyond ൫𝑤௕, 𝑤௚൯ ൌ ሺ𝑤଴ െ 𝑞𝐿, 𝑤଴ െ 𝑞𝐿ሻ, which implies that the vaccine will lower 

Figure 6. Weakly risk‐loving agent with actuarially 
advantageous vaccine 

Figure 7. Strongly risk‐loving agent with actuarially 
advantageous vaccine
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the agent’s expected wealth below the budget because its expected benefit is outweighed by its 

cost. If the vaccine is fully effective, her wealth will be fixed at 𝑤଴ െ 𝑞𝐿, regardless of her 

genetic type. In other words, the agent must give up 𝑞𝐿 to make sure her wealth at 𝑤଴ െ 𝑞𝐿.      

 Figure 8 shows that a risk-neutral individual will not buy the vaccine when it is 

actuarially disadvantageous. Simply, she expects her wealth to be smaller if she purchases the 

vaccine than otherwise. The smaller the expected wealth, the lower the expected utility will be. 

Thus, it is reasonable for her to rather risk getting infected. Then, the  expected wealth will be 

𝑤଴ െ 𝑝𝐿 ൐ 𝑤଴ െ 𝑞𝐿, yielding greater expected utility than buying the vaccine (Note: 𝑝 ൏ 𝑞ሻ.  

 Figure 9 and Figure 10 show that a risk-averse individual’s choice differs by the degree 

of her risk aversion. Figure 9 is the case where the agent has the relatively strong preference for 

certainty. She is so risk-averse that she will still purchase the vaccine even if she could make 

greater wealth by not purchasing the vaccine. She would rather choose a certain amount of 

wealth than what could be bigger but might not be realized. In Figure 10, the agent has relatively 

weak preference for certainty. She may find it worth risking getting infected. 

  

 

Figure 8. A risk‐neutral agent with actuarially 
disadvantageous vaccine. 

Figure 9. A weakly risk‐averse agent with actuarially 
disadvantageous vaccine. 
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Finally, Figure 11 is the case where the agent has the risk-loving personality. To her, a 

certain amount of wealth earned by vaccination is too small to maintain. Expecting her wealth to 

be greater, she would rather risk getting infected than vaccinated.   

 

B. The Choice of the Vaccine under Information Asymmetry  

 

In the previous section, it is assumed that the quality of the vaccine is guaranteed: the 

vaccine is good enough to mitigate all the loss due to the disease. However, it is too optimistic to 

assume that a vaccine is always of good quality. The producer is typically well aware of the 

quality of her product while the buyer usually does not know what she buys before she buys and 

uses it. This imbalance of information between the producer and the buyer may lead the buyer to 

be so skeptical about the vaccine that she may not purchase it at all, which is very undesirable in 

the sense of disease control. In this section, whether such concerns are grounded will be analyzed 

in the framework of signaling games. 

 

 

Figure 10. A strongly risk‐averse agent with 
actuarially disadvantageous vaccine 

Figure 11. A risk‐loving agent with actuarially 
disadvantageous vaccine 
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1) Basic Settings 

 

Let’s assume that there are two players: player 1 (denoted P1 hereinafter) is the producer 

of the vaccine and player 2 (denoted P2 hereinafter) is the buyer of the vaccine. P1 sends a signal 

hinting the quality of the vaccine, and P2 responds to the signal in accordance with her 

subjective belief in the quality of the vaccine, which is not necessarily identical to the actual 

quality of the vaccine, built upon the information obtained from the signal and other sources.  

The quality of the vaccine is determined by P1’s type, the level of skillfulness in this 

case. P1’s type is expressed as 𝜃 ∈ ሼ𝐻, 𝐿ሽ, where 𝐻 means that P1 is a high-skilled type while 𝐿 

means that P1 is a low-skilled type. P1’s type 𝜃 has the following probability distribution 

determined by Nature:  

𝑃𝑟ሺ𝜃ሻ ൌ ൜
𝑃𝑟ሺ𝐻ሻ ൌ 𝑟     
𝑃𝑟ሺ𝐿ሻ ൌ 1 െ 𝑟

 for 0 ൑ 𝑟 ൑ 1, 
(11)

which is a common knowledge, but P2 is not sure whether P1 belongs to 𝐻 or 𝐿. It is assumed 

that only the vaccine produced by a high-skilled producer can prevent variants in the virus.     

P2 guesses P1’s type by observing the signal sent by P1, which takes a form of 

announcement or publication. P1’s signal belongs to a form of set: 𝑠ଵ ∈ ሼ𝑀, 𝑉ሽ. 𝑀 refers to 

“mRNA” technology, which is generally considered an advanced technology, and 𝑉 refers to, 

“viral vector” technology, which is generally considered a traditional technology. Adopting 𝑀 is 

costly but the low-skilled producer should bear higher cost because it is hard for the low-skilled 

producer to manage the advanced technology; and using the traditional technology will not incur 

any cost. Therefore, the cost function of P1’s type conditional on the technology adopted by P1 

is constructed as follows: 
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𝑐ሺ𝜃; 𝑠ଵሻ ൌ

⎩
⎨

⎧
𝑐ሺ𝐻; 𝑀ሻ ൌ 𝑐ு

𝑐ሺ𝐿; 𝑀ሻ ൌ 𝑐௅

𝑐ሺ𝐻; 𝑉ሻ ൌ 0 
𝑐ሺ𝐿; 𝑉ሻ ൌ 0

 for 𝐶ு ൏ 𝐶௅. (12)

It is assumed which technology P1 uses would not change the effectiveness of the vaccine. The 

technology purely serves only signaling purposes.  

 P2 responds after observing P1’s signal. P2’s action belongs to a set: 𝑠ଶ ∈ ሼℎ, 𝑙ሽ. The 

action ℎ suggests that P2 offers a high price believing that the vaccine is effective for both 

variant and non-variant virus; and the action 𝑙 suggests that P2 offers low price believing that the 

vaccine is effective only for non-variant virus. The price offered by P2 is one of ሼ𝜋௛, 𝜋௟ሽ for 

𝜋௛ ൐ 𝜋௟. P1’s payoffs are derived as follows: 

𝑅ଵ൫ሺ𝑠ଵ; 𝜃ሻ; 𝑠ଶ൯ ൌ

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧𝑅ଵ൫ℎ, ሺ𝐻; 𝑀ሻ൯ ൌ 𝜋௛ െ 𝑐ு

𝑅ଵ൫ℎ, ሺ𝐿; 𝑀ሻ൯ ൌ 𝜋௛ െ 𝑐௅

𝑅ଵ൫𝑙, ሺ𝐻; 𝑀ሻ൯ ൌ 𝜋௟ െ 𝑐ு

𝑅ଵ൫𝑙, ሺ𝐿; 𝑀ሻ൯ ൌ 𝜋௟ െ 𝑐௅

𝑅ଵ൫ℎ, ሺ𝐻; 𝑉ሻ൯ ൌ 𝜋௛         

𝑅ଵ൫ℎ, ሺ𝐿; 𝑉ሻ൯ ൌ 𝜋௛         

𝑅ଵ൫𝑙, ሺ𝐻; 𝑉ሻ൯ ൌ 𝜋௟         

𝑅ଵ൫𝑙, ሺ𝐿; 𝑉ሻ൯ ൌ 𝜋௟

. (13)

P2’s payoff depends on P1’s type revealed after P2’s price offer based on her belief in the proper 

use of the vaccine. It is described as in the following table:  

 P2’s Offer 

P1’s Type

 ℎ 𝑙 

𝐻 𝑎ு
௛  𝑎ு

௟  

𝐿 𝑎௅
௛ 𝑎௅

௟  

 
It is also expressed as the following equation: 
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𝑅ଶሺ𝜃; 𝑠ଶሻ ൌ

⎩
⎪
⎨

⎪
⎧𝑅ଶሺ𝐻; ℎሻ ൌ 𝑎ு

௛

𝑅ଶሺ𝐻; 𝑙ሻ ൌ 𝑎ு
௟

𝑅ଶሺ𝐿; ℎሻ ൌ 𝑎௅
௛

𝑅ଶሺ𝐿; 𝑙ሻ ൌ 𝑎௅
௟

 for 𝑎௅
௛ ൏ 𝑎௅

௟ ൏ 𝑎ு
௟ ൏ 𝑎ு

௛  (14)

If P2 offers ℎ and P1’s type turns out 𝐻, P2’s payoff is the greatest because the purpose of the 

vaccine is matched with the quality; if P2 offers ℎ and P1’s type turns out 𝐿, P2’s payoff is the 

smallest because P2 is paying too much for the vaccine only effective for non-variant virus. It is 

assumed that the vaccine produced by type 𝐻 producer is more effective for the non-variant 

virus, which implies 𝑎௅
௟ ൏ 𝑎ு

௟ .              

 P1 is assumed to take a mixed strategy that the same choice is made in different 

probabilities depending on her type. 𝜎ு is the probability that P1 chooses 𝑀 when her type is 𝐻; 

and 𝜎௅ is the probability that P1 chooses 𝑀 when her type is 𝐿. P2 also builds her belief upon 

P1’s type based on her observation of P1’s action. 𝜇ெ is P2’s belief that P1’s type is 𝐻 

conditional on P1 choosing 𝑀; and 𝜇௏ is P2’s belief that P1’s type is 𝐻 conditional on P1 

choosing 𝑉. 𝜇ெ and 𝜇௏ are computed as follows: 

𝜇ெ ൌ
𝑟𝜎ு

𝑟𝜎ு ൅ ሺ1 െ 𝑟ሻ𝜎௅ ; and (15)

𝜇௏ ൌ
𝑟ሺ1 െ 𝜎ுሻ

𝑟ሺ1 െ 𝜎ுሻ ൅ ሺ1 െ 𝑟ሻሺ1 െ 𝜎௅ሻ
. (16)

Figure 12 is the signaling game tree that demonstrates the consequence of each course of 

actions sequentially taken by P1 and P2. This tree presents two different information sets, 𝐼ெ and 

𝐼௏, upon which players make their decisions: 𝐼ெ includes all the information made when P1 

chooses 𝑀; and 𝐼௏ includes all the information made when P1 chooses 𝑉. The tree is also divided 

by Nature, which determines the underlying probability distribution of P1’s type.  

  



21 
 

 

2) Perfect Bayesian Equilibria 

 

Using all the information laid out in Figure 12, perfect Bayesian equilibria (PBE), in 

which neither P1 nor P2 has incentive to deviate, will have to be found. A PBE is the state that 

meets both sequential rationality and consistency. Sequential rationality refers to the condition 

that each player plays a best response with respect to her belief in every information set. 

Consistency refers to the condition that each player’s belief needs to be updated from every 

player’s strategy using the Bayes’ Rule. Each player’s strategy, probability distribution 

determined by Nature and prior and posterior beliefs should be examined to find PBE.      

P1’s strategy is defined as a combination of P1’s actions corresponding to her types. P1’s 

action set 𝑠ଵ is subdivided by her type: 𝜃 ∈ ሼ𝐻, 𝐿ሽ. There exist two action sets corresponding to 

Figure 12. A signaling game tree of vaccine choice
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her types: 𝑠ଵ
ఏ ൌ ൜

𝑠ଵ
ு ∈ ሼ𝑀, 𝑉ሽ

𝑠ଵ
௅ ∈ ሼ𝑀, 𝑉ሽ

. P1’s strategy is defined as 𝑠ଵ
ு𝑠ଵ

௅ ∈ ሼ𝑀𝑀, 𝑀𝑉, 𝑉𝑀, 𝑉𝑉ሽ. A strategy 

𝑥𝑦 in this strategy profile means that P1 chooses 𝑥 if her type is 𝐻 while choosing 𝑦 if she is 𝐿. 

In case P1 adopts the same technology regardless of her type, i.e., 𝑀𝑀 or 𝑉𝑉, such a strategy is 

referred to as a pooling strategy while in case P1 adopts different strategy depending on her type, 

i.e., 𝑀𝑉 or 𝑉𝑀, she is taking a separating strategy.      

P2’s strategy is defined as a combination of P2’s reactions corresponding to P1’s signal. 

P2’s action set is subdivided by P1’s signal: ሼ𝑀, 𝑉ሽ. There are two action sets corresponding to 

P1’s signal: ቊ
𝑠ଶ

ெ ∈ ሼℎ. 𝑙ሽ
𝑠ଶ

௏ ∈ ሼℎ. 𝑙ሽ
. P2’s strategy is defined as 𝑠ଶ

ெ𝑠ଶ
௏ ൌ ሼℎℎ, ℎ𝑙, 𝑙ℎ, 𝑙𝑙ሽ. In other words, 𝑥ᇱ𝑦ᇱ 

means that P2 offers 𝑥ᇱ if she observes 𝑀 and that P2 offers 𝑦ᇱ if she observes 𝑉. 

A PBE derived from a pooling strategy taken by P1 is referred to as a pooling equilibrium 

while a PBE derived from a separating strategy taken by P1 is called a separating equilibrium.    

 

a) 𝒔𝟏
𝑯𝒔𝟏

𝑳 ൌ 𝑴𝑴 

 

 Suppose that P1 chooses 𝑀 regardless of her type, i.e., 𝑠ଵ
ு𝑠ଵ

௅ ൌ 𝑀𝑀. Given that P2 

observes only 𝑀 from the signal sent by P1, 𝜎ு ൌ 𝜎௅ ൌ 1 must be true. Thus, P2 has belief from 

𝐼ெ calculated as: 

𝜇ெ ൌ
𝑟𝜎ு

𝑟𝜎ு ൅ ሺ1 െ 𝑟ሻ𝜎௅ ൌ
𝑟 ൈ 1

𝑟 ൈ 1 ൅ ሺ1 െ 𝑟ሻ ൈ 1
ൌ 𝑟 (17)

In other words, P2 believes that P1’s type is 𝐻 with probability of 𝑟 if she observes that P1 

chooses 𝑀. On the other hand, P2 does not have well-defined belief from 𝐼௏ because the 

probability that P1 chooses 𝑉 is zero, regardless of her type.      
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 Let us consider P2’s responses in 𝐼ெ. If P2 chooses ℎ, i.e., offers a high price, with belief 

that the vaccine is effective for both variant and non-variant virus, the expected payoff will be 

the probability-weighted sum of her payoffs conditional on choosing ℎ: 

𝐸൫𝑅ଶ
ெሺ𝜃; ℎሻ൯ ൌ 𝑟𝑅ଶ

ெሺ𝐻; ℎሻ ൅ ሺ1 െ 𝑟ሻ𝑅ଶ
ெሺ𝐿; ℎሻ ൌ 𝑟𝑎ு

௛ ൅ ሺ1 െ 𝑟ሻ𝑎௅
௛. (18)

 If P2 chooses 𝑙, i.e., offers a low price for the vaccine against only non-variant virus, the 

expected payoff conditional on choosing 𝑙 will be:  

𝐸൫𝑅ଶ
ெሺ𝜃; 𝑙ሻ൯ ൌ 𝑟𝑅ଶ

ெሺ𝐻; 𝑙ሻ ൅ ሺ1 െ 𝑟ሻ𝑅ଶ
ெሺ𝐿; 𝑙ሻ ൌ 𝑟𝑎ு

௟ ൅ ሺ1 െ 𝑟ሻ𝑎௅
௟ . (19)

If ℎ is P2’s best response to 𝑠ଵ
ு𝑠ଵ

௅ ൌ 𝑀𝑀 in 𝐼ெ, 𝐸൫𝑅ଶ
ெሺ𝜃; ℎሻ൯ ൐ 𝐸൫𝑅ଶ

ெሺ𝜃; ℎሻ൯ msut be satisfied. 

It is also equivalent to the following relation: 

𝑟𝑎ு
௛ ൅ ሺ1 െ 𝑟ሻ𝑎௅

௛ ൐ 𝑟𝑎ு
௟ ൅ ሺ1 െ 𝑟ሻ𝑎௅

௟ ⟺
𝑎௅

௟ െ 𝑎௅
௛

𝑎ு
௛ െ 𝑎ு

௟ ൏
𝑟

1 െ 𝑟
. 

(20)

 Let us consider P2’s response in 𝐼௏. Since 1 െ 𝜎ு ൌ 0 and 1 െ 𝜎௅ ൌ 0, the belief that the 

vaccine is effective for both variant and non-variant virus when 𝑉 is observed is not well-defined 

and an arbitrary probability should be assigned to 𝜇௏ in this case. If P2 chooses ℎ, i.e., offers a 

high price, with the belief that the vaccine is effective for both variant and non-variant virus, the 

expected payoff will be the probability-weighted sum of her payoffs from P1 being H and 𝐿 

conditional on P2 choosing ℎ: 

𝐸൫𝑅ଶ
௏ሺ𝜃; ℎሻ൯ ൌ 𝜇௏𝑅ଶ

௏ሺ𝐻; ℎሻ ൅ ሺ1 െ 𝜇௏ሻ𝑅ଶ
௏ሺ𝐿; ℎሻ ൌ 𝜇௏𝑎ு

௛ ൅ ሺ1 െ 𝜇௏ሻ𝑎௅
௛ (21)

If P2 chooses 𝑙, i.e., offers a low price for the vaccine against only non-variant virus, the 

expected payoff conditional on choosing ℎ:  

𝐸൫𝑅ଶ
௏ሺ𝜃; 𝑙ሻ൯ ൌ 𝜇௏𝑅ଶ

௏ሺ𝐻; 𝑙ሻ ൅ ሺ1 െ 𝜇௏ሻ𝑅ଶ
௏ሺ𝐿; 𝑙ሻ ൌ 𝜇௏𝑎ு

௟ ൅ ሺ1 െ 𝜇௏ሻ𝑎௅
௟ . (22)
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If ℎ is P2’s best response to 𝑠ଵ
ு𝑠ଵ

௅ ൌ 𝑉𝑉 in 𝐼௏, 𝐸൫𝑅ଶ
௏ሺ𝜃; ℎሻ൯ ൐ 𝐸൫𝑅ଶ

௏ሺ𝜃; ℎሻ൯ msut be satisfied. It 

is also equivalent to the following relation: 

𝜇௏𝑎ு
௛ ൅ ሺ1 െ 𝜇௏ሻ𝑎௅

௛ ൐ 𝜇௏𝑎ு
௟ ൅ ሺ1 െ 𝜇௏ሻ𝑎௅

௟ ⟺
𝑎௅

௟ െ 𝑎௅
௛

𝑎ு
௛ െ 𝑎ு

௟ ൏
𝜇௏

1 െ 𝜇௏
. 

(23)

Figure 13 describes the case of ሺ𝑀𝑀, ℎℎሻ. If Equation (20) and (23) are true, then ℎ 

should be P2’s best response in both 𝐼ெ and 𝐼௏ ሺ𝑠ଶ
ெ𝑠ଶ

௏ ൌ ℎℎሻ. P1, whose type is 𝐻, has incentive 

to deviate from 𝑀 to 𝑉 because she will earn greater payoff from choosing 𝑉ሺ𝜋௛ሻ than from 

choosing 𝑀 ሺ𝜋௛ െ 𝑐ுሻ; P1, whose type is 𝐿, also has incentive to deviate from 𝑀 to 𝑉 because 

the payoff from choosing 𝑉 ሺ𝜋௛ሻ is greater than the payoff from choosing 𝑀 ሺ𝜋௛ െ 𝑐௅ሻ. Thus, 

ሺ𝑀𝑀, ℎℎሻ will not be a pooling equilibrium if 
௔ಽ

೗ ି௔ಽ
೓

௔ಹ
೓ ି௔ಹ

೗ ൏
௥

ଵି௥
 and 

௔ಽ
೗ ି௔ಽ

೓

௔ಹ
೓ ି௔ಹ

೗ ൏
ఓೇ

ଵିఓೇ
. 

Figure 14 shows the case of ሺ𝑀𝑀, 𝑙𝑙ሻ. If neither Equation (20) nor (23) is true, then 𝑙 

should be P2’s best response in both 𝐼ெ and 𝐼௏ ሺ𝑠ଶ
ெ𝑠ଶ

௏ ൌ 𝑙𝑙ሻ. P1, whose type is 𝐻, has incentive 

to deviate from 𝑀 to 𝑉 because she will earn greater payoff from choosing 𝑉ሺ𝜋௟ሻ than from 

choosing 𝑀 ሺ𝜋௟ െ 𝑐ுሻ; P1, whose type is 𝐿, also has incentive to deviate from 𝑀 to 𝑉 because 

Figure 13. P1’s pooling strategy (MM) and P2’s response (hh)   Figure 14. P1’s pooling strategy (MM) and P2’s response (ll)  
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the payoff from choosing 𝑉 ሺ𝜋௟ሻ is greater than the payoff from choosing 𝑀 ሺ𝜋௟ െ 𝑐ுሻ. Thus, 

ሺ𝑀𝑀, 𝑙𝑙ሻ will not be a pooling equilibrium if 
௔ಽ

೗ ି௔ಽ
೓

௔ಹ
೓ ି௔ಹ

೗ ൐
௥

ଵି௥
 and 

௔ಽ
೗ ି௔ಽ

೓

௔ಹ
೓ ି௔ಹ

೗ ൐
ఓೇ

ଵିఓೇ
.  

  Figure 15 demonstrates the case of ሺ𝑀𝑀, ℎ𝑙ሻ. If Equation (20) is true and Equation (23) 

is untrue, then P2’s best response is ℎ in 𝐼ெ and 𝑙 in 𝐼௏ ሺ𝑠ଶ
ெ𝑠ଶ

௏ ൌ ℎ𝑙ሻ. P1, whose type is 𝐻, has no 

incentive to switch from to 𝑀 to 𝑉 if the payoff from choosing 𝑀 ሺ𝜋௛ െ 𝑐ுሻ is greater than the 

payoff from choosing 𝑉ሺ𝜋௟ሻ; P1, whose type is 𝐿, has no incentive to switch from 𝑀 to 𝑉 if she 

earns greater payoff from choosing 𝑀 ሺ𝜋௛ െ 𝑐௅ሻ than from choosing 𝑉ሺ𝜋௟ሻ. Thus, ሺ𝑀𝑀, 𝑙ℎሻ will 

be a pooling equilibrium if 
௔ಽ

೗ ି௔ಽ
೓

௔ಹ
೓ ି௔ಹ

೗ ൏
௥

ଵି௥
, 

௔ಽ
೗ ି௔ಽ

೓

௔ಹ
೓ ି௔ಹ

೗ ൐
ఓೇ

ଵିఓೇ
 and 𝜋௛ െ 𝜋௟ ൐ 𝑐௅ are met. 

 Figure 16 illustrates the case of ሺ𝑀𝑀, 𝑙ℎሻ. If Equation (20) is untrue and Equation (23) is 

true, then P2’s best response is 𝑙 in 𝐼ெ and ℎ in 𝐼௏ ሺ𝑠ଶ
ெ𝑠ଶ

௏ ൌ 𝑙ℎሻ. P1, whose type is 𝐻, has 

incentive to switch from to 𝑀 to 𝑉 because the payoff from choosing 𝑉ሺ𝜋௛ሻ is greater than the 

payoff from choosing 𝑀 ሺ𝜋௟ െ 𝑐ுሻ; P1, whose type is 𝐿, also has incentive to switch from 𝑀 to 

Figure 15. P1’s pooling strategy (MM) and P2’s response (hl)  Figure 16. P1’s pooling strategy (MM) and P2’s response (lh) 
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𝑉 because she will earn greater payoff from choosing 𝑉ሺ𝜋௛ሻ than from choosing 𝑀 ሺ𝜋௛ െ 𝑐௅ሻ. 

Thus, ሺ𝑀𝑀, 𝑙ℎሻ will not be a pooling equilibrium if 
௔ಽ

೗ ି௔ಽ
೓

௔ಹ
೓ ି௔ಹ

೗ ൐
௥

ଵି௥
 and 

௔ಽ
೗ ି௔ಽ

೓

௔ಹ
೓ ି௔ಹ

೗ ൐
ఓೇ

ଵିఓೇ
. 

 Overall, with the following condition being met, P1’s pooling strategy 𝑠ଵ
ு𝑠ଵ

௅ ൌ 𝑀𝑀 will 

lead to a PBE:  

i) 
௔ಽ

೗ ି௔ಽ
೓

௔ಹ
೓ ି௔ಹ

೗ ൏
௥

ଵି௥
, 

௔ಽ
೗ ି௔ಽ

೓

௔ಹ
೓ ି௔ಹ

೗ ൐
ఓೇ

ଵିఓೇ
 and 𝜋௛ െ 𝜋௟ ൐ 𝑐௅ ⟹ ሺ𝑀𝑀, 𝑙ℎሻ.  

 

 

b) 𝒔𝟏
𝑯𝒔𝟏

𝑳 ൌ 𝑽𝑽 

 

Suppose that P1 chooses 𝑉 regardless of her type, i.e., 𝑠ଵ
ு𝑠ଵ

௅ ൌ 𝑉𝑉. Given that P2 

observes only 𝑉 from the signal sent by P1, 𝜎ு ൌ 𝜎௅ ൌ 0 must be true. Thus, P2 does not have 

well-defined belief from 𝐼ெ because the probability that P1 chooses 𝑀 is zero, regardless of her 

type. On the other hand, P2 has belief from 𝐼௏ calculated as: 

𝜇௩ ൌ
𝑟ሺ1 െ 𝜎ுሻ

𝑟ሺ1 െ 𝜎ுሻ ൅ ሺ1 െ 𝑟ሻሺ1 െ 𝜎௅ሻ
ൌ

𝑟 ൈ 1
𝑟 ൈ 1 ൅ ሺ1 െ 𝑟ሻ ൈ 1

ൌ 𝑟 (24)

In other words, P2 believes that P1’s type is 𝐻 with the probability of 𝑟 if she observes that P1 

chooses 𝑉. 

Let us consider P2’s responses in 𝐼ெ. Since 𝜎ு ൌ 0 and 𝜎௅ ൌ 0, the belief that the 

vaccine is effective for both variant and non-variant virus when 𝑀 is observed is not well-

defined and an arbitrary probability should be assigned to 𝜇ெ in this case. P2’s expected payoff 

of choosing ℎ in 𝐼ெ is calculated as follows: 

𝐸൫𝑅ଶ
ெሺ𝜃; ℎሻ൯ ൌ 𝜇ெ𝑅ଶ

ெሺ𝐻; ℎሻ ൅ ሺ1 െ 𝜇ெሻ𝑅ଶ
ெሺ𝐿; ℎሻ ൌ 𝜇ெ𝑎ு

௛ ൅ ሺ1 െ 𝜇ெሻ𝑎௅
௛; (25)
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while her expected payoff of choosing 𝑙 is calculated as follows: 

𝐸൫𝑅ଶ
ெሺ𝜃; 𝑙ሻ൯ ൌ 𝜇ெ𝑅ଶ

ெሺ𝐻; 𝑙ሻ ൅ ሺ1 െ 𝜇ெሻ𝑅ଶ
ெሺ𝐿; 𝑙ሻ ൌ 𝜇ெ𝑎ு

௟ ൅ ሺ1 െ 𝜇ெሻ𝑎௅
௟ . (26)

ℎ being P2’s best response in 𝐼ெ must satisfy the following: 

𝐸൫𝑅ଶ
ெሺ𝜃; ℎሻ൯ ൐ 𝐸൫𝑅ଶ

ெሺ𝜃; 𝑙ሻ൯ ⟺
𝑎௅

௟ െ 𝑎௅
௛

𝑎ு
௛ െ 𝑎ு

௟ ൏
𝜇ெ

1 െ 𝜇ெ
. 

(27)

Let’s also consider P2’s response in 𝐼௏. Since 1 െ 𝜎ு ൌ 1 and 1 െ 𝜎௅ ൌ 1, the belief that 

the vaccine is effective for both variant and non-variant virus when 𝑉 is observed is 𝑟 as 

obtained in Equation (25). Expected payoffs from choosing ℎ and 𝑙 in 𝐼௏ are computed 

respectively as follows:  

𝐸൫𝑅ଶ
௏ሺ𝜃; ℎሻ൯ ൌ 𝑟𝑅ଶ

௏ሺ𝐻; ℎሻ ൅ ሺ1 െ 𝑟ሻ𝑟𝑅ଶ
௏ሺ𝐿; ℎሻ ൌ 𝑟𝑎ு

௛ ൅ ሺ1 െ 𝑟ሻ𝑎௅
௛ (28)

𝐸൫𝑅ଶ
௏ሺ𝜃; 𝑙ሻ൯ ൌ 𝑟𝑅ଶ

௏ሺ𝐻; 𝑙ሻ ൅ ሺ1 െ 𝑟ሻ𝑟𝑅ଶ
௏ሺ𝐿; 𝑙ሻ ൌ 𝑟𝑎ு

௟ ൅ ሺ1 െ 𝑟ሻ𝑎௅
௟  (29)

ℎ being P2’s best response in 𝐼௏ must meet the following:    

𝐸൫𝑅ଶ
௏ሺ𝜃; ℎሻ൯ ൐ 𝐸൫𝑅ଶ

௏ሺ𝜃; 𝑙ሻ൯ ⟺
𝑎௅

௟ െ 𝑎௅
௛

𝑎ு
௛ െ 𝑎ு

௟ ൏
𝑟

1 െ 𝑟
. (30)

Figure 17 shows the case of ሺ𝑉𝑉, ℎℎሻ. If Equation (27) and (30) are true, ℎ must be the 

best response in both 𝐼ெ and 𝐼௏ ሺ𝑠ଶ
ெ𝑠ଶ

௏ ൌ ℎℎሻ. P1, whose type is 𝐻, has no incentive to deviate 

from 𝑉 to 𝑀 because she will earn greater payoff from choosing 𝑉ሺ𝜋௛ሻ than from choosing 𝑀 

ሺ𝜋௛ െ 𝑐ுሻ; P1, whose type is 𝐿, also has no incentive to deviate from 𝑉 to 𝑀 because the payoff 
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from choosing 𝑉 ሺ𝜋௛ሻ is greater than the payoff from choosing 𝑀 ሺ𝜋௛ െ 𝑐௅ሻ. Thus, ሺ𝑉𝑉, ℎℎሻ will 

be a pooling equilibrium as long as 
௔ಽ

೗ ି௔ಽ
೓

௔ಹ
೓ ି௔ಹ

೗ ൏
ఓಾ

ଵିఓಾ
 and 

௔ಽ
೗ ି௔ಽ

೓

௔ಹ
೓ ି௔ಹ

೗ ൏
௥

ଵି௥
 are true.  

Figure 18 demonstrates the case of ሺ𝑉𝑉, 𝑙𝑙ሻ. If neither Equation (27) nor (30) is true, then 

𝑙 should be P2’s best response in both 𝐼ெ and 𝐼௏ ሺ𝑠ଶ
ெ𝑠ଶ

௏ ൌ 𝑙𝑙ሻ. P1, whose type is 𝐻, has no 

incentive to deviate from 𝑉 to 𝑀 because she will earn greater payoff from choosing 𝑉ሺ𝜋௟ሻ than 

from choosing 𝑀 ሺ𝜋௟ െ 𝑐ுሻ; P1, whose type is 𝐿, also has no incentive to deviate from 𝑉 to 𝑀 

Figure 19. P1’s pooling strategy (VV) and P2’s response (hl)  Figure 20. P1’s pooling strategy (VV) and P2’s response (lh)

Figure 17. P1’s pooling strategy (VV) and P2’s response (hh)  Figure 18. P1’s pooling strategy (VV) and P2’s response (ll) 
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because the payoff from choosing 𝑉 ሺ𝜋௟ሻ is greater than the payoff from choosing 𝑀 ሺ𝜋௟ െ 𝑐௅ሻ. 

Thus, ሺ𝑉𝑉, 𝑙𝑙ሻ will be a pooling equilibrium as long 
௔ಽ

೗ ି௔ಽ
೓

௔ಹ
೓ ି௔ಹ

೗ ൐
ఓಾ

ଵିఓಾ
 and 

௔ಽ
೗ ି௔ಽ

೓

௔ಹ
೓ ି௔ಹ

೗ ൐
௥

ଵି௥
 are true.  

  Figure 19 illustrates the case of ሺ𝑉𝑉, ℎ𝑙ሻ. If Equation (27) is true and Equation (30) is 

untrue, then P2’s best response is ℎ in 𝐼ெ and 𝑙 in 𝐼௏ ሺ𝑠ଶ
ெ𝑠ଶ

௏ ൌ ℎ𝑙ሻ. P1, whose type is 𝐻, has no 

incentive to switch from to 𝑉 to 𝑀 if the payoff from choosing 𝑉 ሺ𝜋௟ሻ is greater than the payoff 

from choosing 𝑀 ሺ𝜋௛ െ 𝑐ுሻ; P1, whose type is 𝐿, also has no incentive to switch from 𝑉 to 𝑀 if 

she will earn greater payoff from choosing 𝑉ሺ𝜋௟ሻ than from choosing 𝑀 ሺ𝜋௛ െ 𝑐௅ሻ. Thus, 

ሺ𝑉𝑉, ℎ𝑙ሻ will be a pooling equilibrium if 
௔ಽ

೗ ି௔ಽ
೓

௔ಹ
೓ ି௔ಹ

೗ ൏
ఓಾ

ଵିఓಾ
, 

௔ಽ
೗ ି௔ಽ

೓

௔ಹ
೓ ି௔ಹ

೗ ൐
௥

ଵି௥
 and 𝜋௛ െ 𝜋௟ ൏ 𝑐ு. 

 Figure 20 describes the case of ሺ𝑉𝑉, 𝑙ℎሻ. If Equation (27) is untrue and Equation (30) is 

true, then P2’s best response is 𝑙 in 𝐼ெ and ℎ in 𝐼௏ ሺ𝑠ଶ
ெ𝑠ଶ

௏ ൌ 𝑙ℎሻ. P1, whose type is 𝐻, has no 

incentive to switch from to 𝑉 to 𝑀 because the payoff from choosing 𝑉ሺ𝜋௛ሻ is greater than the 

payoff from choosing 𝑀 ሺ𝜋௟ െ 𝑐ுሻ; P1, whose type is 𝐿, also has no incentive to switch from 𝑉 

to 𝑀 because she will earn greater payoff from choosing 𝑉ሺ𝜋௛ሻ than from choosing 𝑀 ሺ𝜋௟ െ 𝑐௅ሻ. 

Thus, ሺ𝑉𝑉, 𝑙ℎሻ will be a pooling equilibrium as long as 
௔ಽ

೗ ି௔ಽ
೓

௔ಹ
೓ ି௔ಹ

೗ ൐
ఓಾ

ଵିఓಾ
 and 

௔ಽ
೗ ି௔ಽ

೓

௔ಹ
೓ ି௔ಹ

೗ ൏
௥

ଵି௥
 are met. 

  Overall, with each of the following conditions met, P1’s pooling strategy 𝑠ଵ
ு𝑠ଵ

௅ ൌ 𝑉𝑉 will 

lead to each condition’s corresponding equilibrium:   

ii) 
௔ಽ

೗ ି௔ಽ
೓

௔ಹ
೓ ି௔ಹ

೗ ൏
ఓಾ

ଵିఓಾ
 and 

௔ಽ
೗ ି௔ಽ

೓

௔ಹ
೓ ି௔ಹ

೗ ൏
௥

ଵି௥
⟹ ሺ𝑉𝑉, ℎℎሻ; 

iii) 
௔ಽ

೗ ି௔ಽ
೓

௔ಹ
೓ ି௔ಹ

೗ ൐
ఓಾ

ଵିఓಾ
 and 

௔ಽ
೗ ି௔ಽ

೓

௔ಹ
೓ ି௔ಹ

೗ ൐
௥

ଵି௥
⟹ ሺ𝑉𝑉, 𝑙𝑙ሻ; 

iv) 
௔ಽ

೗ ି௔ಽ
೓

௔ಹ
೓ ି௔ಹ

೗ ൏ ఓಾ

ଵିఓಾ
 and 

௔ಽ
೗ ି௔ಽ

೓

௔ಹ
೓ ି௔ಹ

೗ ൐ ௥

ଵି௥
 and 𝜋௛ െ 𝜋௟ ൏ 𝑐ு ⟹ ሺ𝑉𝑉, ℎ𝑙ሻ; and 

v) 
௔ಽ

೗ ି௔ಽ
೓

௔ಹ
೓ ି௔ಹ

೗ ൐
ఓಾ

ଵିఓಾ
 and 

௔ಽ
೗ ି௔ಽ

೓

௔ಹ
೓ ି௔ಹ

೗ ൏
௥

ଵି௥
⟹ ሺ𝑉𝑉, 𝑙ℎሻ. 
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c) 𝒔𝟏
𝑯𝒔𝟏

𝑳 ൌ 𝑴𝑽  

 

Figure 21 demonstrates the case of ሺ𝑀𝑉, ℎ𝑙ሻ. Suppose that P1 chooses 𝑀 if her type is 𝐻 

and 𝑉 if her type is 𝐿. It suggests 𝜎ு ൌ 1 and 𝜎௅ ൌ 0. It turns out 𝜇ெ ൌ 1 and 𝜇௏ ൌ 0. In other 

words, P2 is confident that P1’s type is 𝐻 if 𝑀 is observed while P1’s type is 𝐿 if 𝑉is observed. 

P2’s best responses will be ℎ if 𝑀 is observed and 𝑙 if 𝑉 is observed. P1, whose type is 𝐻, has no 

incentive to deviate from 𝑀 to 𝑉 if the payoff from choosing 𝑀 ሺ𝜋௛ െ 𝑐ுሻ is greater than the 

payoff from choosing 𝑉 ሺ𝜋௟ሻ; and P1, whose type is 𝐿, has no incentive to deviate from 𝑉 to 𝑀 if 

the payoff from choosing 𝑉 ሺ𝜋௟ሻ is greater than the payoff from choosing 𝑀 ሺ𝜋௛ െ 𝑐௅ሻ. Thus, 

with the following condition met, P1’s separating strategy 𝑠ଵ
ு𝑠ଵ

௅ ൌ 𝑀𝑉 will lead to a PBE: 

vi) 𝑐ு ൏ 𝜋௛ െ 𝜋௟ ൏ 𝑐௅ ⟹ ሺ𝑀𝑉, ℎ𝑙ሻ.  

       

d) 𝒔𝟏
𝑯𝒔𝟏

𝑳 ൌ 𝑽𝑴  

Figure 21. P1’s separating strategy (MV) and P2’s response (hl) Figure 22. P1’s separating strategy (MV) and P2’s response (lh)
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Figure 22 describes the case of ሺ𝑉𝑀, 𝑙ℎሻSuppose that P1 chooses 𝑉 if her type is 𝐻 and 

𝑀 if her type is 𝐿. It suggests 𝜎ு ൌ 0 and 𝜎௅ ൌ 1. It turns out 𝜇ெ ൌ 0 and 𝜇௏ ൌ 1. In other 

words, P2 is confident that P1’s type is 𝐻 if 𝑉 is observed while P1’s type is 𝐿 if 𝑀is observed. 

P2’s best responses will be ℎ if 𝑉 is observed and 𝑙 if 𝑀 is observed. P1, whose type is 𝐻, has no 

incentive to deviate from 𝑉 to 𝑀 because the payoff from choosing 𝑉 ሺ𝜋௛ሻ is greater than the 

payoff from choosing 𝑀 ሺ𝜋௟ െ 𝑐ுሻ; and P1, whose type is 𝐿, has incentive to deviate from 𝑀 to 

𝑉 because the payoff from choosing 𝑀 ሺ𝜋௟ െ 𝑐௅ሻ is smaller than the payoff from choosing 𝑉 

ሺ𝜋௛ሻ. Thus, the separating strategy 𝑠ଵ
ு𝑠ଵ

௅ ൌ 𝑉𝑀 will not lead to any equilibrium. 

IV. Discussions 

 

A. Penalty, Reward and Nudge 

    

It is demonstrated in III.A. that an individual is required to purchase a fully effective 

vaccine ሺ𝐴 ൌ 𝐿ሻ to completely mitigate the loss due to the infectious disease. It also shows that 

degrees of actuarial fairness of the vaccine and individual differences in preference for risk may 

complicate one’s choice. For example, as demonstrated in III.A., a risk-loving individual will not 

purchase the vaccine at all when the vaccine is actuarially fair or disadvantageous; even if the 

vaccine is actuarially advantageous, a risk-loving individual with the relatively strong preference 

for risk will not buy the vaccine, as well. Even a risk-neutral or risk-averse individual may not 

buy the vaccine, either, in case the vaccine is actuarially disadvantageous or their risk aversion is 

relatively weak.  
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It may not be always undesirable that an individual takes a risk of her own as long as the 

risk is not contagious through society. For example, the damage of an uninsured robbery is 

typically isolated to the victim and harmless to a third party. However, in this case, an individual 

who is not vaccinated may not only allow herself to be infected but also carry and transmit the 

disease to someone else, eventually harming the rest of society. Especially if the probability to 

get infected is very large, it may be too risky to leave even a small fraction of the population 

unvaccinated. Thus, vaccination of those who would not vaccinate themselves will be necessary 

in order to maintain public health from the disease.  

Generally, financial means are used to provide individuals with incentives to get 

vaccinated. One way to lead unvaccinated individuals to vaccination is to penalize them. Various 

methods can be designed as penalties from taxes or fines imposed by the government to health 

insurance surcharges or increase in premia charged by private parties. In the context of this 

thesis, these actions will add loss to the existing loss from the disease and reduce one’s expected 

wealth if that person decides to remain unvaccinated. The expected wealth with the penalty is 

calculated in application of Equation (9): 

Figure 23. A weakly risk‐averse agent may switch to getting 
vaccinated if penalized for not being vaccinated although 
the vaccine is actuarially disadvantageous.  

Figure 24. A risk‐loving agent may remain unvaccinated even 
if penalized for not being vaccinated when the vaccine is 
actuarially advantageous.  
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𝐸ሺ𝑤଴ሻ ൌ 𝑝𝑤௕
଴ ൅ ሺ1 െ 𝑝ሻ𝑤௚

଴ ൌ 𝑤଴ െ 𝑝𝐿 െ 𝐹, (31)

where 𝐹 refers to the penalty imposed to reduce an unvaccinated individual’s expected wealth. 

This penalty is supposed to bring down the expected wealth of an unvaccinated individual and to 

induce herself to be vaccinated. However, depending on the degree of actuarial fairness of the 

vaccine and the extent of one’s preference for risk, the effectiveness of the penalty may have 

significant difference.  

Let us assume that the vaccine is actuarially disadvantageous. Figure 23 suggests that a 

risk-averse individual with relatively weak risk aversion might inoculate herself if she were 

properly penalized for not being vaccinated. The penalty will reduce the expected wealth without 

vaccination. If she remains unvaccinated, her expected utility will be reduced from 𝑣଴ to 𝑣ଶ. 

However, if she is vaccinated, she will be guaranteed to receive 𝑣ଵ. Thus, for her, it is not worth 

maintaining the position to remain unvaccinated.  

On the other hand, Figure 24 suggests that a risk-loving individual might remain 

unvaccinated even if the penalty reduces the expected wealth. If she remains unvaccinated, she 

can yield lower expected utility than otherwise. However, the expected utility from remaining 

unvaccinated still exceed that from getting vaccinated. Thus, for her, it is still worth taking a risk 

Figure 25. A weakly risk‐averse agent may switch to getting 
vaccinated if rewarded for being vaccinated although the vaccine 
is actuarially disadvantageous.  

Figure 26. A risk‐loving agent may remain unvaccinated 
even if rewarded for being vaccinated when the vaccine is 
actuarially advantageous.  
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getting infected. In this case, the penalty for a risk-loving individual must be much more severe 

so that she will be forced to be vaccinated. 

Another way to encourage those unvaccinated to vaccinate themselves is to provide them 

with financial incentives. It can be done with subsidies from government or bonus from 

employers. In this context, these actions will increase individual’s expected wealth as follows: 

𝐸ሺ𝑤ଵሻ ൌ 𝑝𝑤௕
ଵ ൅ ሺ1 െ 𝑝ሻ𝑤௚

ଵ ൌ 𝑤଴ െ 𝑝𝐿 ൅ ሺ𝑝 െ 𝑞ሻ𝐴 ൅ 𝑆 (32)

where 𝑆 refers to the reward for getting vaccinated. Figure 25 implies that a risk-averse 

individual with relatively weak risk aversion might get vaccinated if she is properly rewarded for 

getting vaccinated. Not only the reward will increase her expected wealth, but also she will have 

a certain amount of wealth . The utility ሺ𝑣ଶሻ generated at E2 by getting vaccinated is greater than 

the expected utility from remaining unvaccinated.  

On the other hand, a risk-loving individual will remain unvaccinated if the subsidy is 

large enough to induce her to get vaccinated as illustrated in Figure 26. Even though the increase 

in her expected wealth by the reward for getting vaccinated, she may still believe that she can 

eventually obtain greater wealth that will generate greater utility in case she is not infected. Thus, 

despite a certain amount of wealth earned which would be greater because of the reward for 

getting vaccinated, she may decide not to get vaccinated. 

Financial means, i.e., penalty and rewards, described above may have other related 

weaknesses. Even if a penalty or a reward is properly assessed for an individual, this amount 

may be too large for other to afford or not be enough to induce others to get vaccinated. 

However, imposing different penalties or providing different rewards depending on the 

individual’s preference for risk will result in administrative difficulties involving backlog costs. 

In addition, collecting penalties and giving out rewards will require both individuals and 
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corresponding authorities (e.g., government, employer, etc.) to be able to afford these financial 

means. If these requirements are not fulfilled, the effectiveness of financial means may be highly 

limited. 

Other than financial means, ‘nudging’ can be an effective tool to lead individuals to get 

vaccinated. According to Thaler & Sustein (2009, p. 6), a “nudge…is any aspect of the choice 

architecture that alters people’s behaviror in a predictable way without forbidding any options or 

significantly changing their economic incentives.” For example, instead of penalizing or 

rewarding, a simple text reminder of a physician appointment that includes “a shot is reserved for 

you at the clinic” may help individuals get the idea that the vaccine is already available (Brewer, 

2021). This message actually can be interpreted that it costs less to get vaccinated than they have 

thought. In other words, individuals may realize that 𝑞, the premium on the vaccine effectiveness 

mentioned in Equation (3), is lower and that the vaccine is actuarially more advantageous than 

perceived, encouraging them to get vaccinated.  

Of course, the effectiveness of this “nudge” is limited. One who really dislikes getting 

vaccinated will unlikely change her mind and get vaccinated after receiving this message; one 

who really wants to get vaccinated will get vaccinated anyway whether or not she receives this 

message. However, for those who are not sure whether vaccination will improve their welfare, 

the “nudge” can be a very powerful instrument to encourage vaccination.    

 

B. Interplay between the Signal and the ‘Type’  

   

It is assumed in III.B. that the signal sent by P2, i.e., technology, is not correlated with 

the type of P2, i.e., the level of skillfulness of the producer which determines the quality of the 
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vaccine. However, such an assumption is unrealistic because P2, the vaccine producer, would not 

adopt a new technology unless it helped the productivity or quality of the product improved to 

eventually enhance its profitability. Thus, it will be worth examining how the adoption of a new 

technology will influence the outcome of the game.       

In Figure 27, two players’ payoffs are revised as a relatively new ‘mRNA’ technology 

ሺ𝑀ሻ raises the quality of the vaccine. Not only P2’s but also P1’s payoff should increase because 

P2 is willing to pay more for the vaccine produced using M. Additionally, P1 earns 𝛽 and P2 

earns 𝛾.     

Let us consider P1 plays a pooling strategy 𝑀𝑀, which previously had only one case of 

perfect Bayesian equilibrium with very restrictive conditions. Simply adding 𝛾 to P2’s payoff 

will not alter P2’s belief because the extra payoff will cancel out when the expected payoff of P2 

is calculated. Thus, P2’s belief that P1’s type is 𝐻 conditional on observing 𝑀 and P2’s belief 

that P1’s type is 𝐻 conditional on observing 𝑉 remain not altered and must meet as 
௔ಽ

೗ ି௔ಽ
೓

௔ಹ
೓ ି௔ಹ

೗ ൏
௥

ଵି௥
 

Figure 27. P1’s payoffs increase because the vaccine produced with a 
higher level of technology is believed to be more effective.  
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and 
௔ಽ

೗ ି௔ಽ
೓

௔ಹ
೓ ି௔ಹ

೗ ൏
ఓೇ

ଵିఓೇ
, respectively. If 

௔ಽ
೗ ି௔ಽ

೓

௔ಹ
೓ ି௔ಹ

೗ ൏
௥

ଵି௥
 and 

௔ಽ
೗ ି௔ಽ

೓

௔ಹ
೓ ି௔ಹ

೗ ൏
ఓೇ

ଵିఓೇ
 are correct, then ℎ should be 

P2’s best response in both 𝐼ெ and 𝐼௏ ሺ𝑠ଶ
ெ𝑠ଶ

௏ ൌ ℎℎሻ. P1, whose type is 𝐻, may have no incentive 

to deviate from 𝑀 to 𝑉 if she earns greater payoff from choosing 𝑀 ሺ𝜋௛ െ 𝑐ு ൅ 𝛽ሻ than from 

choosing 𝑉ሺ𝜋௛ሻ; P1, whose type is 𝐿, may also have no incentive to deviate from 𝑀 to 𝑉 if the 

payoff from choosing 𝑀 ሺ𝜋௛ െ 𝑐௅ ൅ 𝛽ሻ is greater than from choosing 𝑉 ሺ𝜋௛ሻ. Thus, ሺ𝑀𝑀, ℎℎሻ 

can be a pooling equilibrium if 𝛽 െ 𝑐௅ ൐ 0. 

To sum up, the assumption that the signal and the sender’s type are uncorrelated may not 

be realistic. Taking into account the interplay between the signal and the sender’s type may 

significantly alter the outcome of the game. If it is true that the type of technology applied to 

vaccine production has deep influence on the effectiveness of vaccination, the buyer needs to 

take it into consideration.      

  

V. Concluding Remarks 

 

Two models for individual decisions on vaccination under incomplete information, which 

poses uncertainty and information asymmetry, have been presented in this thesis.  

In the state-preference model, the vaccine plays a role of insurance against the disease. It 

suggests that the agent’s vaccine purchase is determined by interaction between actuarial fairness 

of the vaccine and risk aversion of the agent. The more actuarially advantageous the vaccine is 

and the more risk-averse the agent’s personality is, the more likely the agent will purchase the 

vaccine.  
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It is also important to note that an individual normally acts upon her own interest, which 

may not coincide with collective goals of society, i.e., herd immunity achieved by universal 

vaccination in this thesis. Penalty, reward and ‘nudge’ are discussed as instruments to implement 

universal vaccination. Financial incentives provided by penalty and reward may not be as 

effective as intended if the agent’s preference for risk is strong. A ‘nudge’ may be a powerful 

tool to encourage individuals, who is at the border between those who like vaccines and those 

who dislike vaccines, to engage in universal vaccination. 

The signaling game model shows that an individual buyer of the vaccine builds up her 

belief of the vaccine’s quality by observing the signal sent by the producer, in this case, the type 

of technology. The producer’s pooling and separating strategies may result in perfect Bayesian 

equilibria with conditions that bound the buyer’s belief and the producer’s incentive to deviate 

from the initial strategy.  

These conditions may be altered if the initial assumption that the signal sent by the 

producer, i.e., the type of technology used by the producer, is not correlated with the information 

that the buyer actually pursues, i.e., the quality of the vaccine does not hold. It is concerned with 

the effectiveness of vaccination, and the buyer may need to take it into account. 

Finally, it is important to note that this thesis mainly focuses on individual behaviour, not 

on collective actions of group or society regarding vaccination. Especially, it assumes that the 

purchase of a vaccine is individually financed, which is usually not the case in real life. A 

publicly-financed vaccination program may have other consequences than predicted by this 

research because individuals will likely face uncertainty and incentives altered by the program.    
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