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Abstract 

In the pursuit of global net-zero emissions by 2050, the Russia–Ukraine War emerges as a 

potential disruptor, challenging progress toward this critical objective. We explore the 

repercussions of the conflict on the European Union’s (EU) initial energy transition goals, with 

a keen focus on electricity generation. To analyze projections for coal, natural gas, nuclear, 

hydro, and renewables in Germany and Italy over the period of 2023 and 2027, we employ the 

seasonal autoregressive integrated moving average (SARIMA) model. Our findings from 

Germany presented a contrast with those from Italy, influenced by the impact of the onset of 

the war. The observed and anticipated shifts in Germany’s energy landscape, especially the 

notable decline in nuclear power generation and the simultaneous increase in coal usage, 

present considerable obstacles to attaining carbon neutrality. Italy’s resilient energy shifts, 

marked by hydropower fluctuations and increased renewable energy, suggest continued 

measures for emission reduction. This study not only identifies contrasting energy challenges 

but also proposes nuanced policy implications tailored to each country’s context, providing 

valuable insights for navigating the complex path toward sustainable and resilient carbon 

neutrality amidst geopolitical uncertainties. 

Keywords: Energy Transition, Geopolitical Impact, Carbon Neutrality, Renewable Energy, 

Integrated Energy Planning 
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1. Introduction 

The invasion of Ukraine by Russia in February 2022 has intensified the strain on the 

global supply chain, already affected by the U.S.–China trade conflict and pandemic-related 

disruptions. This escalation has led to a surge in energy prices worldwide, contributing to the 

acceleration of global inflation. Europe, in particular, has been severely impacted given its 

historical reliance on Russia, the largest exporter of pipeline natural gas. The unexpected 

disruption has prompted some European governments, such as Germany and Italy, to 

implement measures such as rationing hot water and electricity to mitigate natural gas 

consumption during the summer of 2022 (Hughes, 2022; Wallace, 2022). 

Furthermore, Europe’s pursuit of energy transition toward carbon neutrality by 2050, 

as outlined by the European Commission in 2023, faces additional challenges as Russia 

curtails its supply of natural gas to the continent in the aftermath of the conflict. Since the 

onset of the war, the European Union (EU) and its member states have been implementing 

measures that may pose a significant threat to the ongoing progress toward energy transition. 

As the largest economy within the EU, Germany has historically heavily relied on 

Russian gas for its primary energy consumption (Bella et al., 2022). In 2021, Russian pipeline 

gas constituted the country’s main source of gas supply (Eckert & Abnett, 2022). However, in 

response to diminished Russian gas supplies following the onset of the conflict, Germany 

implemented a temporary shift back to coal-fired power plants as part of a transitional 

strategy (Meredith, 2022). Faced with continued constraints in natural gas supplies right after 

the onset of the war, the country took the significant step of permanently closing its last three 

nuclear power plants in early 2023. 

Similarly, Italy, as the third-largest economy in the EU, has experienced a heavy 
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dependence on Russian gas, leading to a search for alternatives since the onset of the conflict. 

Italy’s reliance on Russian gas decreased from 40% in 2021 to 25% in 2022 (Reuters, 2022). 

In an effort to substitute these energy needs, Italy has rapidly transitioned to renewables, such 

as wind and solar. Consequently, the country witnessed a notable 120% increase in renewable 

capacity from the first half of 2022 to the corresponding period in 2023. Amidst this 

transition, hydroelectric power production in Italy faced a substantial decline of 

approximately 40% during the first half of 2021 compared to the same period in 2022, 

primarily caused by a drought (AFP, 2022). 

The recent challenges faced by Germany and Italy in their energy sectors serve as 

illustrative examples of the disruptions and cutoffs experienced by EU countries in their 

energy sources since the onset of the war. Assessing the impact of the onset of the war and its 

concurrent events on the EU’s initial energy transition goals is crucial for determining 

potential shifts in strategies to achieve climate neutrality by 2050, with a focus on 

mainstreaming energy transition (Siddi, 2023). Consequently, this research aims to examine 

the short-term effects of the energy crisis triggered by the Russia–Ukraine War and 

concurrent events on Europe’s ongoing journey toward carbon neutrality. 

To achieve our goal, we project electricity supplies from the five main energy sources 

(coal, natural gas, nuclear, hydro, and renewables) and analyze their respective impacts on 

greenhouse gas (GHG) emissions in both Germany and Italy over the five-year period 

following the Russia–Ukraine War (2023–2027). This comparative case study, examining 

projections with and without the onset of the war’s effects, is designed to yield valuable 

insights. The examination of short-term projections, accounting for the impact of the onset of 

the war, has the potential to provide meaningful recommendation for strategically adjusting 

the energy transition roadmap toward the EU’s carbon neutrality goals. 
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Our focus on short-term effects is motivated by their immediacy and visibility, 

facilitating quicker measurement and analysis compared to long-term effects. This immediacy 

is vital for policymakers who must swiftly address pressing challenges. A thorough 

understanding of the immediate impact on energy use and GHG emissions provides valuable 

insights for shaping policy responses, including measures related to energy security, resource 

allocation, and diplomatic actions. Moreover, short-term effects hold substantial implications 

for energy markets. Rapid shifts in energy sources caused by disruptions in energy 

infrastructure necessitate prompt responses from policymakers. Researching short-term 

effects aids in comprehending and navigating the dynamic landscape of these changes, 

contributing to more effective decision-making in the face of evolving energy scenarios. 

2. Literature review 

Energy transition toward carbon neutrality typically involves the shift from fossil-

based energy systems to renewable-based systems. This transition is primarily motivated by 

concerns related to climate change, energy security, and the long-term sustainability of 

existing energy practices. Economic research related to energy transition encompasses four 

key areas: 

1. Cost–Benefit Analysis: This involves evaluating the economic costs and benefits 

associated with transitioning to renewable energy sources compared to maintaining 

the status quo. 

2. Investment and Finance: This area focuses on assessing the economic risks and 

returns associated with investments in clean energy technologies. It explores the 

financial aspects of transitioning to cleaner energy sources. 

3. Innovation and Technology Adoption: Examining the economic drivers of innovation 
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in clean energy technologies is crucial. This area explores the economic incentives 

and factors that accelerate the development and adoption of innovative technologies 

in the clean energy sector. 

4. Economic Modeling and Scenario Analysis: This involves simulating different 

scenarios of energy transition and assessing their economic impacts. By using 

economic modeling and scenario analysis, researchers can project and analyze the 

potential outcomes of various transition pathways. 

Each of these areas contributes to our understanding of the economic dimensions of 

energy transition and aids policymakers and stakeholders in making informed decisions for a 

sustainable and low-carbon energy future. 

The literature on key area (1) is frequently utilized to assist decision-makers in 

comprehending the potential economic costs and benefits of energy transition (Mathioulakis 

et al., 2013; Shih & Tseng, 2014). Given that the primary motivation for transitioning to 

renewable energy often revolves around environmental benefits, including climate change 

mitigation and improved community health (Yang et al., 2021; Obaideen et al., 2021), the 

literature in this field offers analyses that encompass the implications of energy transition for 

environmental, social, and economic sustainability. In key area (2), the literature seeks key 

risk diversification strategies and actionable insights to mitigate investment risks, ultimately 

aiming to enhance accessibility to energy. Three primary avenues of investigation within this 

domain include risk identification (Williams, Jaramillo, and Taneja 2018; Gujba et al. 2012), 

risk assessment (Zaroni et al. 2019; Wu et al. 2020), and risk mitigation (Bhattacharyya et al., 

2019; Schmidt et al., 2013; Kim et al., 2021). For key area (3), the literature has delved into 

examining the causality between technology innovations and renewable energy (Xie et al., 
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2020; Khan et al., 2022; Palage et al., 2019; Kim & Brown, 2019). In the context of key area 

(4), the literature has evaluated the economic implications of energy transitions by 

considering scenarios of rapid and transformative energy transition (Hainsch et al., 2022; 

Jacques et al., 2023; Hainsch et al., 2022; Kim & Wilson, 2019). 

The existing literature has extensively explored the effects of external shocks—

encompassing geopolitical events such as wars, economic fluctuations, and unexpected 

technological breakthroughs—on the path toward achieving carbon neutrality in energy 

transitions. Recent studies have specifically focused on discerning both the challenges and 

opportunities that characterize the landscape of energy transition in the post–COVID-19 era 

(Hepburn et al., 2021; Chong et al., 2022; Tian et al., 2022).  

Moreover, a nascent body of literature is emerging on understanding the impact of the 

onset of the war on energy transition. Given the war’s relatively recent commencement, 

investigations have predominantly relied on surveys, interviews, and qualitative analyses as 

the primary methods of inquiry, reflecting the limited timeframe available for comprehensive 

study. For instance, semi-structured expert interviews were employed to identify the potential 

catalytic effects of the war on Germany’s energy sector, aimed at mitigating climate change 

and reducing reliance on emission-intensive energy sources (Lomoschitz 2023). Another 

study utilized a survey to examine how the war altered public support for clean energy 

policies in Switzerland (Steffen and Patt, 2022). Additionally, limited qualitative analysis has 

been conducted to comprehend the broader impacts of the war on the environment, including 

changes in energy policy (Pereira et al. 2022).  

Despite significant progress in economic research related to energy transition and the 

exploration of external shocks, a noticeable dearth of research quantifies the precise impact of 
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these shocks on this transition. This absence is surprising given that neglecting such external 

shocks has the potential to significantly influence the trajectory and success of the transition. 

The oversight of these external factors may result in incomplete or overly optimistic 

assessments, impeding the development of robust strategies and policies for achieving carbon 

neutrality. Therefore, integrating a comprehensive analysis of potential external shocks is 

imperative for adopting a more resilient and adaptive approach to address the complex 

challenges associated with energy transition. 

The remainder of the paper is structured as follows. Initially, we provide a detailed 

elucidation of the data, unveiling unique patterns of electricity generation in both Germany 

and Italy. Subsequently, we present a comprehensive outline of the time series model 

employed for forecasting electricity supply from the five energy sources and predicting the 

resulting GHG emissions. Following the modeling section, we analyze the findings derived 

from our research and explore their implications on energy transition and associated 

environmental impacts. In the penultimate section, we draw conclusions based on the insights 

gained from our study. Finally, we elucidate potential avenues for future research directions, 

contributing to the ongoing discourse on energy transition and carbon neutrality. 

3. Data and method 

3.1. Data 

We sourced electricity generation data—encompassing coal, natural gas, nuclear, 

hydro, and renewables—for Germany and Italy from the European Network of Transmission 

System Operators for Electricity (ENTSO-E) Transparency Platform. Recognized as the 

largest energy data platform for European power systems (Hirth, Mühlenpfordt, and Bulkeley 

2018), ENTSO-E has been extensively utilized in literature for electricity price modeling and 
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forecasting (e.g., Halužan et al., 2020). The platform offers quarterly to hourly electricity 

generation data categorized by energy source, which we aggregated into monthly values for 

our time series analysis. At the time of data acquisition for our empirical model, the 

electricity generation data covers the period from January 2015 to February 2023 for 

Germany and from January 2016 to February 2023 for Italy, reflecting their reporting period 

differences. 

3.2. Method 

The seasonal autoregressive integrated moving average (SARIMA) model is employed 

as a time analysis because the data exhibits seasonality. For each of the five energy sources 

between the two countries, we specify two SARIMA models: one using historical data of 2015–

2022 by carrying the onset of the war effect in 2022 to forecast electricity supply in 2023–2027 

and one using historical data of 2015–2022 without carrying the onset of the war effect in 2022 

to forecast electricity supply in 2023–2027 in Germany; and another one using historical data 

of 2016–2022 by carrying the onset of the war effect in 2022 to forecast electricity supply in 

2023–2027 and one using historical data of 2016–2022 without carrying the onset of the war 

effect in 2022 to forecast electricity supply in 2023–2027 in Italy.  

We construct the SARIMA model (i.e., 𝐴𝑅𝐼𝑀𝐴 (𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄)𝑠) as follows:  

   𝜙𝑝(Β)𝛷𝑃(𝛣𝑠)(1 − 𝛣)𝑑(1 − 𝛣𝑠)𝐷𝑦𝑡 = 𝛼 + 𝜃𝑞(𝛣)𝛩𝑄(𝛣𝑠)𝜀𝑡                (1) 

𝜙𝑝(𝛣) =  1 − 𝜙1𝛣 − ⋯ − 𝜙𝑝𝛣𝑝 

𝛷𝑃(𝛣𝑠) =  1 − 𝛷1𝛣𝑠 − ⋯ −  𝛷𝑃𝛣𝑃𝑠 

𝜃𝑞(𝛣) =  1 + 𝜃1𝛣 + ⋯ + 𝜃q𝛣𝑞 

𝛩𝑄(𝛣𝑠) =  1 + 𝛩1𝛣𝑠 +  ⋯ + 𝛩𝑄𝛣𝑄𝑠 
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(1 − 𝛣)(1 − 𝐵𝑠)𝑦𝑡 = (𝑦𝑡 − 𝑦𝑡−1) − (𝑦𝑡−𝑠 − 𝑦𝑡−𝑠−1) 

𝜀𝑡 ~ WN(0, 𝜎2) 

Here, 𝛣 is the backward shift wherein the operator denotes the monthly electricity 

generation data with a one-month time lag. 𝑝 and 𝑃 are the non-seasonal and seasonal 

components of autoregressive (AR), which is a combination of the one-month lag of the 

monthly electricity generation data. 𝑞 and 𝑄 are the non-seasonal and seasonal components 

of moving average (MA), which is a series of averages calculated from historical monthly 

electricity generation values. 𝑑 and 𝐷 are the numbers of non-seasonal and seasonal 

differences. 𝑠 is the duration of the periodic seasonal behavior for data. In our case, we 

utilize 12 months as a value of s (s = 12). 𝑦𝑡 is the electricity generation at time 𝑡. 𝛼 is the 

constant, and 𝜀𝑡 is white noise with the independent and identical distribution that shows no 

autocorrelation. 

The process of choosing the best-fitted SARIMA model involves sequential steps. 

First, the Hylleberg, Engle, Granger, and Yoo (HEGY) test detects seasonality, which, if 

present, is eliminated through seasonal differencing (Hyndman and Khandakar 2008). 

Second, the stationarity of the data is assessed using the Dickey–Fuller generalized least 

squares (DF-GLS) and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests, with necessary 

adjustments made through differencing. Third, the best model fit is determined by 

incrementally adjusting the parameters p, q, P, and Q to minimize the Akaike information 

criterion (AIC). Fourth, the Portmanteau test checks whether the time series is more than just 

white noise by assessing serial correlation. Fifth, if the residuals are white noises, we proceed 

with forecasting monthly electricity generation using the SARIMA model. Otherwise, we 

return to step 3 to explore alternative models. 
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For accurate forecasting of future monthly electricity generation, we aimed to 

eliminate seasonality and achieve stationarity in the data. In Germany, coal exhibited no 

seasonality, while natural gas, nuclear, and hydropower required seasonal adjustments to 

achieve stationarity. Although renewables initially displayed non-stationarity, they were not 

seasonally adjusted, leading to paradoxical results. In Italy, both coal and renewables 

exhibited seasonality, with coal requiring an additional first ordinary difference for 

stationarity. Natural gas was already stationary, while hydropower required further 

adjustments.  

The final model selection for both countries was based on the smallest AIC for each 

energy source (refer to the appendix for additional details). For Germany, we selected the 

following models in Appendix Table A.5: coal (Table A.5 Model 1 with AIC 683.2366), 

natural gas (Table A.5 Model 1 with AIC 463.0139), nuclear (Table A.5 Model 3 with AIC 

426.6752), hydropower (Table A.5 Model 2 with AIC 224.6255), and renewables (Table A.5 

Model 1 with AIC 727.3991). In Italy, our chosen models were coal (Table A.5 Model 2 with 

AIC 56.6979), natural gas (Table A.5 Model 2 with AIC 293.9097), hydropower (Table A.5 

Model 2 with AIC 153.4951), and renewables (Table A.5 Model 2 with AIC 98.6432). 

The projected electricity supply for 2023–2027, considering the impact of the onset of 

the war, and the projected electricity supply for 2022–2027 without the onset of the war effect 

for each of the five energy sources in both countries is transformed into GHG emissions 

based on CO2 conversion factors specified in Equation (2).  

𝐶𝑂2 = 𝐻 × 𝐶𝐹 × 𝑀𝑊                       (2) 

where CO2 indicates the quantity of GHG emissions, H denotes the heating value, indicating 

the amount of heat released during the combustion of energy sources, and CF stands for CO2 



10 

 

conversion factors for energy sources used in electricity generation, sourced from the 

European Commission (2023a). The specific factors for each energy source are as follows: 

nuclear (1.4 g CO2 
𝑒𝑞

MJ
, which stands for grams of carbon dioxide equivalent per megajoule, 

indicating the amount of GHG emissions measured in grams for each unit of energy produced 

in megajoules), hard coal (16 g CO2 
𝑒𝑞

MJ
), brown coal (1.4 g CO2 

𝑒𝑞

MJ
), natural gas (12.8 g CO2 

𝑒𝑞

MJ
), hydro (0 g CO2 

𝑒𝑞

MJ
), solar (0 g CO2 

𝑒𝑞

MJ
), and wind (0 g CO2 

𝑒𝑞

MJ
), and MW is a ratio of the 

molecular weight of carbon dioxide to carbon, which is 
44

12
.  

4. Results and discussions 

4.1. Descriptive analysis 

Prior to delving into the analysis of the time series model results, it is advantageous to 

undertake a comprehensive examination of the historical data related to electricity supplies 

from primary energy sources. This scrutinty should concentrate on periods marked by 

significant changes, particularly those occurring just before and immediately after the onset 

of the war. The preceding descriptive analysis of historical data from 2021 to 2022, 

conducted around the period just before and immediately after the onset of the war, offers 

valuable context and insights to enrich the interpretation of subsequent time series model 

results. 

The left panel of Figure 1 depicts the alterations in energy sources between 2021 and 

2022 in Germany. The most notable change during this period is the significant decrease in 

nuclear power generation, which can be attributed to the country’s phaseout of nuclear power 

plants. Specifically, the Grohnde, Gundremmingen C, and Brokdorf plants were permanently 

closed at the end of December 2021 (Federal Office for the Safety of Nuclear Waste 
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Management 2023). Following this, the last three reactors in the country—Isar 2, Emsland, 

and Neckarwestheim 2—underwent decommissioning in April 2023 (Federal Office for the 

Safety of Nuclear Waste Management 2023). 

Another significant change is the observed increase in both coal and renewable energy 

supplies. In 2022, Germany has witnessed a resurgence of coal as the country’s economy 

turns to this traditional fuel to address an ongoing energy crisis triggered by the war. Notably, 

between July and September 2022, over 36% of the electricity supplied to the German power 

grids originated from coal-fired power plants. This marks a significant increase from the third 

quarter of the previous year, when coal contributed under 32% to the overall energy mix 

(Federal Statistical Office of Germany 2023). On the flip side, the crisis has strengthened 

Germany’s resolve to eliminate fossil fuels and expedite the shift to clean energy in the long 

run. The government has announced its intention to phase out coal entirely by 2030, a 

decision made in the after the onset of the war, and this marks an advancement of eight years 

compared to the target set by the previous administration. Germany aspires to source 80% of 

its electricity from renewable sources by that deadline, exceeding the earlier goal of 65% and 

almost doubling the 42% share held in 2021. 

The right panel of Figure 1 illustrates the shifts in energy sources in Italy over the 

same period. A prominent pattern in this panel is the significant reduction in hydropower 

generation, attributed to Italy experiencing its most severe drought in 70 years in 2022 

(Reuters 2023a). Furthermore, both coal and renewable energy sources have experienced an 

increase, mirroring the situation in Germany. The significant rise in the share of renewable 

energy can be largely attributed to the country’s investment of €59 billion as part of the 

National Resilience and Recovery Plan (NRRP), aimed at incentivizing renewables from 

2021 to 2026 (International Trade Administration 2022). Similar to Germany’s 
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circumstances, the conflict prompted an increase in the country’s short-term coal usage as an 

alternative to the Russian natural gas it previously imported. Italy raised its electricity 

production from coal to 7.5% in 2022, up from 4.6% in 2021 (Reuters 2023b). 

  

Figure 1. Changes in electricity generation by sources in Germany and Italy in 2021 and 2022.  

4.2. Time series model results 

Electricity generation projects, measured in terawatts (TW), based on the time series 

model for five primary energy sources with and without impact the impact of the onset of the 

war from March 2017 to February 2027 are presented in three formats for both countries: the 

pattern of changes in electricity projects depicted by connecting monthly forecasts for each of 

the five energy sources individually with and without the impact of the onset of the war in 

Figures 3 and 6; projected GHG emissions from natural gas and coal, presented both with and 

without the impact of the onset of the war, in Figures 4 and 7; and means and standard 

deviations of forecasted electricity generation in TW for five major energy sources on a 

yearly basis in Table 1. For Figures 3, 4, 6, and 7, we consolidate monthly data into annual 

data.  

Table 1 presents the means and standard deviations of forecasted electricity 
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generation in TW for five major energy sources on a yearly basis, utilizing the time series 

model discussed above. The forecasted values span ten years from March 2017 to February 

2027 for Germany and Italy, considering scenarios both with and without the impact of the 

onset of the war. We emphasize the analysis up to 2027 to provide a focused insight. This 

selection allows us to highlight specific trends and considerations during this critical period, 

including scenarios both with and without the impact of the onset of the war. 

In the case of Germany, there has been a slight increase in the projected electricity 

generation from natural gas, rising from 20 TW to 21.53 TW with the war compared to a 

scenario without the war between March 2023 and February 2024 (Table 1), despite the 

shutdown of natural gas imports from Russia. The unexpected rise in the share of natural gas 

is a surprising projection considering the cessation of natural gas imports from Russia 

following the outbreak of the war. The swift adjustment in the country’s import sources, as 

evident in the 2022 data, can be explained by the increased influx of natural gas imports from 

third countries such as Norway and Belgium (see Appendix Figure A.1). The percentage of 

gas imported from Russia significantly declined from 62% before the war to 19% after the 

conflict. Despite the slight increase in natural gas supply immediately after the onset of the 

war, its relative share, compared to a scenario without the war, is projected to decrease two 

years. Precisely, just before the war, its share was 11.4% in February 2023. It is projected to 

be 13.8% with the war and 14.4% without the war in February 2024 (Figure 3). 

Another intriguing observation is the dramatic surge in coal usage, escalating from 

38.09 TW to 57.16 TW when compared to counterfactuals covering the period from March 

2023 to February 2024 (Table 1). This surge results in a projected 36.5% share of coal with 

the war, contrasting with a 27.4% share in a scenario without the war by February 2024 

(Figure 3). Germany turns to coal as Russia throttles gas supply to Germany. Hydroelectric 
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power generation has experienced minimal change, while renewable energy generation has 

seen a slight decline, dropping from 83.15 TW to 77.16 TW during the war when compared 

to a scenario without the conflict over the same period. 

The war, with its 3.8% point increase in the share of coal and a corresponding 3.8% 

point decrease in the share of natural gas in the two years following the conflict (Table 1), is 

anticipated to pose a substantial challenge to Germany’s carbon neutrality goal. The impact 

on GHG emissions becomes more apparent. Specifically, under a scenario without the war, 

the combined GHG emissions from both energy sources are projected to be 80 million tons in 

February 2027. However, this figure surges to 117 million tons (more than 46% higher) with 

the war in play (Figure 4). The ratio of GHG emissions from coal to those from natural gas 

was expected to be balanced at 56.3% in March 2023 to 33.2% in February 2027 without the 

war. However, given the unexpected increase in the share of coal triggered by the war, this 

ratio shifts to 60.1% to 51.6%. This shift underscores the concerning deviation from the 

balanced projection and highlights the significant impact of the onset of the war on 

Germany’s GHG emissions landscape. 

In contrast to Germany, Italy has witnessed a slight reduction in natural gas usage, 

dropping from 9.02 TW to 8.70 TW during the war when compared to a scenario without the 

conflict between March 2023 and February 2024 (Table 1). This anticipated decrease signals 

a short-term disruption in the supply of natural gas from Russia, underscoring the challenges 

Italy faces in promptly diversifying its import sources. Despite reducing reliance on Russia 

from 36% to 13% before and after the onset of the war, the difficulty is underscored by the 

relatively stagnant influx of natural gas imports from third countries (see Appendix Figure 

A.2.).  
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On the contrary, coal utilization in Italy has maintained a relatively stable pattern, 

showing minimal variation both with and without the war (refer to Figures 6 and 7 and Table 

1). Notably, there has been a consistent increase in hydropower generation, rising from 1.55 

TW to 2.08 TW during the war compared to a scenario without the conflict between March 

2023 and February 2024 (see Table 1). This surge in hydropower electricity during the war is 

expected to contribute to a higher share (11.9%), as opposed to the scenario without the war 

(8.9%). Importantly, the projected increase in hydropower share by February 2024 stems 

from the recovery in hydropower generation following the severe drought experienced in 

Italy during 2022.  

Additionally, renewable energy sources in Italy have experienced a minor decrease, 

shifting from 4.71 TW to 4.61 TW during the war compared to a scenario without the conflict 

over the same period. This decline is likely attributed to the impact of the NRRP 

implementation carried out in 2022 for the model considering the war, an aspect not factored 

into the model without the conflict. 

Despite the substantial impact of the drought on hydropower generation and a slight 

dip in renewable energy production coinciding with the outbreak of the war, the overall 

electricity supply from the four energy sources experienced minimal change as a result of the 

conflict. Consequently, the combined amount of electricity supply between the two scenarios 

is projected to remain around 200 TW in 2027 (Figure 6). Consequently, there is no 

significant difference in the anticipated GHG emissions by February 2024 from natural gas 

and coal, with marginal distributional changes between the two sources, registering 26 tons 

with the war and 25 tons without the war (Figure 7). 
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Table 1. Means and standard deviations of forecasted electricity generation for four major energy sources on a yearly basis, utilizing the time 

series model with and without the impact of the onset of the war 

Unit: TW 

Germany 

Year/Month 

Coal Natural gas Nuclear Hydro Renewables 

With war Without war With war Without war With war Without war With war Without war With war Without war 

2017/3~2018/2 
64.38 

(5.03) 

63.87 

(4.57) 

10.27 

(1.88) 

10.42 

(2.08) 

23.72 

(4.94) 

23.77 

(4.92) 

8.35 

(0.77) 

8.36 

(0.78) 

58.29 

(4.25) 

59.35 

(4.98) 

2018/3~2019/2 
66.82 

(4.24) 

65.18 

(4.51) 

15.16 

(3.93) 

15.40 

(4.15) 

23.82 

(2.69) 

23.81 

(2.75) 

8.22 

(1.22) 

8.22 

(1.21) 

62.77 

(3.02) 

63.61 

(3.50) 

2019/3~2020/2 
49.09 

(5.35) 

50.61 

(5.01) 

18.09 

(3.60) 

18.53 

(3.51) 

23.30 

(2.75) 

23.27 

(2.85) 

8.27 

(0.83) 

8.26 

(0.83) 

67.85 

(3.49) 

68.98 

(4.29) 

2020/3~2021/2 
38.56 

(12.57) 

41.27 

(10.10) 

19.43 

(3.86) 

19.75 

(3.83) 

20.16 

(1.72) 

20.16 

(1.73) 

8.74 

(0.74) 

8.75 

(0.74) 

72.17 

(5.72) 

73.20 

(6.59) 

2021/3~2022/2 
49.55 

(9.34) 

48.15 

(8.48) 

18.48 

(2.71) 

18.38 

(3.15) 

20.87 

(3.71) 

20.83 

(3.84) 

8.00 

(0.96) 

8.00 

(0.97) 

70.86 

(2.82) 

72.16 

(3.42) 

2022/3~2023/2 
54.91 

(5.84) 

43.62 

(4.66) 

18.66 

(3.25) 

17.37 

(3.21) 

10.35 

(2.53) 

10.32 

(2.04) 

7.79 

(0.78) 

7.75 

(0.95) 

75.48 

(5.64) 

80.07 

(6.05) 

2023/3~2024/2 
57.16 

(5.21) 

38.09 

(4.63) 

21.53 

(3.10) 

20.00 

(3.06) 

6.52 

(1.79) 

7.54 

(2.04) 

7.58 

(0.92) 

7.61 

(1.05) 

77.16 

(3.23) 

83.15 

(4.06) 
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2024/3~2025/2 
57.62 

(4.57) 

33.75 

(4.31) 

24.07 

(2.87) 

22.24 

(3.01) 

0.00 

(0.00) 

0.00 

(0.00) 

7.61 

(0.86) 

7.61 

(1.00) 

81.05 

(2.38) 

87.27 

(3.16) 

2025/3~2026/2 
58.00 

(4.19) 

29.59 

(3.97) 

26.07 

(2.84) 

24.32 

(3.00) 

0.00 

(0.00) 

0.00 

(0.00) 

7.53 

(0.88) 

7.55 

(1.02) 

84.50 

(1.84) 

91.39 

(2.51) 

2026/3~2027/2 
58.28 

(3.85) 

25.45 

(3.65) 

27.98 

(2.83) 

26.31 

(2.97) 

0.00 

(0.00) 

0.00 

(0.00) 

7.50 

(0.86) 

7.51 

(1.01) 

87.90 

(1.49) 

95.50 

(2.05) 

Italy 

2017/3~2018/2 
1.76 

(0.83) 

1.76 

(0.83) 

6.26 

(1.04) 

6.24 

(1.07) 
N/A N/A 

3.00 

(0.94) 

3.00 

(0.94) 

3.71 

(0.45) 

3.74 

(0.45) 

2018/3~2019/2 
2.23 

(0.26) 

2.23 

(0.26) 

6.89 

(1.60) 

6.87 

(1.64) 
N/A N/A 

3.99 

(1.39) 

3.99 

(1.40) 

3.91 

(0.43) 

3.93 

(0.42) 

2019/3~2020/2 
1.38 

(0.36) 

1.38 

(0.36) 

9.44 

(1.07) 

9.49 

(1.10) 
N/A N/A 

3.88 

(0.72) 

3.88 

(0.74) 

4.04 

(0.37) 

4.07 

(0.39) 

2020/3~2021/2 
0.96 

(0.29) 

0.96 

(0.29) 

9.39 

(1.67) 

9.43 

(1.74) 
N/A N/A 

3.97 

(1.15) 

3.97 

(1.15) 

4.16 

(0.43) 

4.20 

(0.44) 

2021/3~2022/2 
1.08 

(0.28) 

1.08 

(0.28) 

9.80 

(1.49) 

9.85 

(1.53) 
N/A N/A 

3.72 

(1.00) 

3.72 

(1.00) 

4.36 

(0.43) 

4.38 

(0.42) 

2022/3~2023/2 
1.83 

(0.25) 

1.79 

(0.24) 

9.78 

(1.20) 

9.88 

(0.77) 
N/A N/A 

2.38 

(0.79) 

2.40 

(0.94) 

4.52 

(0.49) 

4.54 

(0.50) 

2023/3~2024/2 
2.08 

(0.27) 

2.17 

(0.28) 

8.70 

(0.60) 

9.02 

(0.41) 
N/A N/A 

2.08 

(0.87) 

1.55 

(1.02) 

4.61 

(0.48) 

4.71 

(0.50 
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2024/3~2025/2 
2.52 

(0.27) 

2.67 

(0.26) 

8.31 

(0.30) 

8.53 

(0.22) 
N/A N/A 

1.41 

(0.78) 

0.69 

(0.87) 

4.69 

(0.55) 

4.85 

(0.50) 

2025/3~2026/2 
2.87 

(0.27) 

3.11 

(0.27) 

8.12 

(0.15) 

8.27 

(0.12) 
N/A N/A 

0.90 

(0.79) 

0.31 

(0.50) 

4.85 

(0.50) 

5.01 

(0.50) 

2026/3~2027/2 
3.27 

(0.27) 

3.58 

(0.27) 

8.03 

(0.07) 

8.13 

(0.06) 
N/A N/A 

0.45 

(0.66) 

0.05 

(0.14) 

4.96 

(0.53) 

5.16 

(0.50) 

Notes: Means and standard deviations are calculated for the ten-year period from March 2017 to February 2027. For Germany, “With war” represents forecasted results using 

the entire sample from January 2015 to February 2023, while “Without war” is based on data from January 2015 to February 2022. For Italy, “With war” reflects forecasted 

results using the entire sample from January 2016 to February 2023, while “Without war” is based on data from January 2016 to February 2022. The category “Renewables” 

encompasses the sum of biomass, solar, geothermal, wind offshore, and wind onshore. The unit of electricity is terawatt (TW), and standard deviations are presented in 

parentheses. The data source is ENTSO-E. In the case of hydro in Italy, if the value is negative, it is adjusted to 0 when calculating the average and standard deviation for the 

years 2025–2027. 
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Notes: A vertical line is included to delineate the impact of the onset of the war. Germany completely shut down 

its nuclear power plants in mid-April, so we present the historical electricity generation from nuclear by May 

2023. 

Figure 2. Pattern of changes in electricity projects depicted by connecting monthly forecasts 

for each of the five energy sources individually with and without the impact of the onset of 

the war in Germany. 
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Notes: We aggregate monthly data to yearly data (i.e., we consolidate monthly data from March 2017 to 

February 2018 into annual data for the year 2018). 

Figure 3. Forecasts for the electricity generation projects from five energy sources, presented 

both with and without the impact of the onset of the war in Germany. 
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Figure 4. Projected greenhouse gas emissions between natural gas and coal, presented both 

with and without the impact of the onset of the war in Germany. 
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Notes: A vertical line is included to demarcate the impact of the onset of the war. 

Figure 5. Pattern of changes in electricity projects depicted by connecting monthly forecasts 

for each of the five energy sources individually with and without the impact of the onset of 

the war in Italy. 
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Figure 6. Forecasts for the electricity generation projects from five energy sources, presented 

both with and without the impact of the onset of the war in Italy. 

 

 

Figure 7. Projected greenhouse gas emissions from natural gas and coal, presented both with 
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and without the impact of the onset of the war in Italy. 

5. Discussion and conclusions 

Moving toward achieving net-zero emissions by 2050 stands as a critical global 

objective for numerous countries. However, conflicts such as the Russia–Ukraine War might 

pose challenges to progress in attaining this goal. Our assessment delves into the impact of 

the Russia–Ukraine War and its concurrent events on the EU’s initial energy transition goals, 

with a specific focus on mainstreaming electricity generation. This involves projecting 

electricity supplies from the five primary energy sources (coal, natural gas, nuclear, hydro, 

and renewables) and analyzing their corresponding effects on GHG emissions in both 

Germany and Italy over the five-year period following the war (2023–2027). 

Our findings from Germany presented a contrast with those from Italy, influenced by 

the impact of the onset of the war. The observed and anticipated shifts in Germany’s energy 

landscape, both pre- and post-the onset of the war, especially the notable decline in nuclear 

power generation and the simultaneous increase in coal usage, present considerable obstacles 

to attaining carbon neutrality. Based on these findings, several energy policy implications are 

evident. 

First, given the surge in coal usage during crises, there is a critical need to accelerate 

the deployment of renewable energy sources. Policies should focus on incentivizing and 

promoting the rapid expansion of renewable infrastructure to counterbalance the increased 

reliance on coal. Second, the unexpected rise in natural gas supply, despite the cessation of 

imports from Russia, underscores the importance of diversifying energy sources to enhance 

resilience. Policies should prioritize strengthening energy security by fostering diverse and 

resilient supply chains. Third, the surge in coal usage and the corresponding impact on GHG 



25 

 

emissions as a response to gas supply disruptions emphasizes the necessity to reevaluate 

dependency on fossil fuels, especially in times of geopolitical instability. Fourth, Germany’s 

commitment to phasing out coal entirely by 2030 is commendable, but policies should be 

robustly implemented to ensure this target is met. Continued support for the development of 

clean energy technologies and a just transition for affected communities is crucial. 

The findings from the energy shifts in Italy—particularly the fluctuation in 

hydropower generation, the rise in coal and renewable energy, and the overall stability of 

electricity supply before and after the onset of the war—suggest several energy policy 

implications for achieving carbon neutrality. Despite minimal changes in electricity supply 

and GHG emissions, policymakers should continue implementing measures to reduce GHG 

emissions further. Continued support for energy efficiency, carbon capture technologies, and 

stricter emission standards can contribute to achieving carbon neutrality goals. 

Italy can navigate the complexities introduced by the observed energy shifts, ensuring 

a more resilient and sustainable path toward carbon neutrality by incorporating the following 

policy implications based on our findings. First, the substantial reduction in hydropower 

generation caused by severe drought underscores the vulnerability of water-dependent energy 

sources. The consistent increase in hydropower generation, especially following the severe 

drought, indicates the importance of resilient hydropower infrastructure. Policies should 

encourage investments in modernizing and expanding hydropower facilities to harness the 

potential of this renewable energy source. Second, Italy’s significant rise in renewable energy 

share, driven by the NRRP, demonstrates the effectiveness of targeted investments. Continued 

support for renewable energy initiatives and financial incentives can further enhance the 

transition to cleaner and sustainable energy sources. Third, the challenges faced by Italy in 

diversifying natural gas imports highlight the need for a strategic approach to ensure a stable 
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energy supply. Policymakers should develop comprehensive plans to diversify import 

sources, minimizing dependence on a single country and mitigating supply disruptions during 

geopolitical events. Collaborative efforts with neighboring countries and international 

partners can facilitate the sharing of resources, enhancing energy security and sustainability. 

Fourth, the overall stability in electricity supply, despite the challenges faced, suggests the 

importance of integrated energy planning. Policymakers should develop comprehensive 

strategies that consider the interplay of various energy sources, ensuring a reliable and 

balanced energy supply. 

Considering the tangible implications presented for each of the two countries, we 

acknowledge the following limitations that could be addressed and improved in future 

research efforts. Our study focuses on the impact of the Russia–Ukraine War on energy 

sources in Germany and Italy. However, geopolitical dynamics are highly complex and 

subject to rapid changes. Future research should consider a broader geopolitical context and 

potential geopolitical shifts that may influence energy policies. Our analysis primarily 

explores energy shifts in the context of geopolitical events. Future research could delve 

deeper into the economic variables, considering the impact of economic conditions, trade 

relationships, and market forces on energy transitions in the aftermath of conflicts. Our study 

also primarily examines quantitative data related to energy sources. Incorporating qualitative 

aspects such as public opinion, the social acceptance of energy transitions, and the role of 

civil society can provide a more comprehensive understanding of the challenges and 

opportunities in achieving carbon neutrality. Finally, our study analyzes a specific five-year 

period following the war. Future research could extend the temporal scope to assess the 

longer-term impacts of energy policies on GHG emissions and neutrality goals, considering 

the potential evolution of energy landscapes over an extended period. Our study also consider 



27 

 

the war as a singular disruption in the data-generating process. However, in reality, the war is 

ongoing and continues to exert a dynamic impact on the energy policies of EU countries, 

suggesting a direction for future studies. 
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Appendix 

Table A.1 reports the components of each energy source in Germany and Italy, respectively. 

Germany is abundant with hard coal and brown coal (Schreurs 2016). Hence, brown and hard 

coal account for 20% and 10% of the electricity mix in 2021, respectively (Sabine Kinkartz 

2022). Conversely, Italy relies on hard coal in electricity generation. Figures A.1 and A.2 

describe gas flows in Germany and Italy, while Figures A.3 and A.4 describe historical 

electricity generation data in the two countries. 

Table A.1. Construction of raw data 

Germany Italy 

Coal 
Fossil: Brown coal/Lignite 

Coal Fossil: Hard coal 
Fossil: Hard coal 

Natural gas 
Fossil: Coal-derived gas 

Natural gas 
Fossil: Coal-derived gas 

Fossil: Gas Fossil: Gas 

Nuclear Nuclear Nuclear  

Hydro 

Hydro: Pumped storage 

Hydro 

Hydro: Pumped storage 

Hydro: Run-of-river and poundage Hydro: Run-of-river and poundage 

Hydro: Water reservoir Hydro: Water reservoir 

Renewables 

Solar 

Renewables 

Solar 

Wind: Onshore Wind: Onshore 

Wind: Offshore Wind: Offshore 

Biomass Biomass 

Geothermal Geothermal 

Notes: Germany’s data spans from January 2015 to February 2023, and Italy’s data spans from January 2016 to February 2023. Since all 

nuclear power plants in Italy were closed by 1990, no nuclear for Italy exists. The data is obtained from the ENTSO-E Transparency Platform. 
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Notes: We aggregate monthly data to yearly data. Denmark and Austria were excluded. Source: 

https://www.iea.org/data-and-statistics/data-product/gas-trade-flows#gas-trade-flows 

Figure A.1. Gas trade flows in Germany. 

 

 

Notes: We aggregate monthly data to yearly data. Croatia and Slovenia were excluded. 

Figure A.2. Gas trade flows in Italy. 

https://www.iea.org/data-and-statistics/data-product/gas-trade-flows%23gas-trade-flows
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Notes: We aggregate monthly data to yearly data. In Panel B, we use the fuel emission factor (g CO2 eq/MJfuel): 

hard coal = 16, brown coal = 1.7, and natural gas = 12.8. We aggregate hard coal and brown coal into one coal by 

employing a weighted average based on historical monthly electricity generation, in which the calculation is 0.66 

× 1.7 (hard coal) + 0.34 × 16 (brown coal). 

Figure A.3. Historical electricity generation trend in Germany. 
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Notes: We aggregate monthly data to yearly data. In Panel B, we use the fuel emission factor (g CO2 eq/MJfuel): 

hard coal = 16 and natural gas = 12.8. 

Figure A.4. Historical electricity generation trend in Italy. 

 

The process of choosing the best-fitted SARIMA model involves sequential steps, which 

are shown in Figure 1. The detail steps are described as follows.  

1.1. Steps of construction of SARIMA model  

First, since monthly electricity generation data shows seasonal fluctuations, we need to 

test seasonality. To detect seasonality, we use the HEGY test, which comprises seasonal unit 

root tests for the monthly data. If the data has seasonality, we take the seasonal difference to 

eliminate seasonality. 

Second, the data needs to be tested for its stationarity. We use the DF-GLS unit root test 

to test the stationarity of time-series data. The DF-GLS test, more powerful than the 
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augmented Dickey–Fuller (ADF) test, controls for trends in unstable time series via 

generalized least squares before applying ADF methodology. To prevent overdifferencing, the 

KPSS unit root test is also conducted to determine d and D. Using both tests enhances 

reliability by testing mutually exclusive hypotheses. If the data remains non-stationary after 

seasonal differences, additional differences will be conducted to make the data stationary. 

Then the DF-GLS and KPSS tests are performed again. When the data has no seasonality at 

step 1, we test stationarity using these two tests. If the data remains non-stationary after the 

tests, the first difference will be considered to make the data stationary. In this case, seasonal 

difference is not required. After that, the DF-GLS and KPSS tests are performed once more. 

Third, we initialize 𝑝, 𝑞, 𝑃, and 𝑄 to 1, increment each by 1, and iterate this process 

until we find the best-fitted model based on the smallest AIC (Bolotov 2022). 

Fourth, while stationarity is a time series where the statistical properties remain constant 

over time, stationarity does not guarantee that the time series is a series of random values, 

which is white noise. We conduct the Portmanteau white noise test to test whether the given 

time series is serially correlated. If the p-value of the test is less than 0.05, it is not white 

noise.  

Fifth, we forecast the montly electricity generation based on the determined 𝑝, 𝑞, 𝑃, 𝑄, 

and s. 

1.2. Seasonality test results 

Table A.2 showcases the outcomes of seasonality tests conducted in both Germany 

and Italy. In the case of Germany, seasonal adjustments were applied to natural gas, nuclear, 

and hydro data to achieve stationarity. For coal in Germany, no seasonality is apparent, 

indicated by a test statistic of −3.268, compared to the 5% critical value of −2.670 (with a p-
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value less than 0.05). Conversely, seasonality is observed for natural gas in Germany, with a 

test statistic of −0.994, exceeding the 5% critical value of −2.776 (with a p-value greater than 

0.05). Similarly, seasonal patterns exist for nuclear energy in Germany, supported by a test 

statistic of −1.929 compared to the 5% critical value of −2.710 (with a p-value greater than 

0.05). Hydropower in Germany also exhibits seasonality, with a test statistic of −2.126 

compared to the 5% critical value of −2.710 (with a p-value greater than 0.05). Conversely, 

no discernible seasonality is found in renewables, indicated by a test statistic of −3.110, 

which is below the 5% critical value of −2.670 (with a p-value less than 0.05). 

Table A.2 also incorporates results from the examination of Italy’s seasonality. In this 

context, seasonal adjustments were applied to coal, hydro, and renewables data to achieve 

stationarity. Regarding coal in Italy, seasonality is apparent, as indicated by a test statistic of 

−2.140, surpassing the 5% critical value of −2.849 (with a p-value greater than 0.05). 

Conversely, no seasonality is observed for natural gas, supported by a test statistic of −3.143, 

below the 5% critical value of −2.829 (with a p-value less than 0.05). Hydropower in Italy 

exhibits seasonal patterns, evidenced by a test statistic of −2.465 compared to the 5% critical 

value of −2.829 (with a p-value greater than 0.05). Similarly, renewables in Italy display 

seasonality, with a test statistic of −1.514, exceeding the 5% critical value of −3.121 (with a 

p-value greater than 0.05). 

Table A.2. Seasonal unit roots test results  

 Germany Italy 
 

Coal 
Natural 

gas 
Nuclear Hydro Renewables Coal Natural gas Hydro Renewables 

Unit root  0 1 1 1 0 1 0 1 1 

Lags . 9 4 4 . 1 . . 10 

Test 

statistics 
−3.268 −0.994 −1.929 −2.126 −3.110 −2.140 −3.143 −2.465 −1.514 

1% critical 

values 
−3.210 −3.297 −3.243 −3.243 −3.210 −3.355 −3.339 −3.339 −3.568 
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5% critical 

values 
−2.670 −2.776 −2.710 −2.710 −2.670 −2.849 −2.829 −2.829 −3.121 

10% 

critical 

values 

−2.410 −2.530 −2.455 −2.455 −2.410 −2.614 −2.590 −2.590 −2.927 

Notes: If “Unit root” equals 1, it indicates the presence of a seasonal unit root in the data; otherwise, there is no 

seasonal unit root. If “Lags” is equal to “.,” it signifies that lags were not utilized for the HEGY test. 

1.3. Stationary test results 

Table A.3 presents the results of the DF-GLS and KPSS tests. In the case of Germany, 

natural gas achieves stationarity after a seasonal difference (d = 0, D = 1). Initially, it 

demonstrates stationarity in the first step, indicated by a test statistic of −3.405, exceeding the 

5% critical value of −3.071 (with a p-value less than 0.05). In the second step, it maintains 

stationarity, supported by a test statistic of 0.135 compared to the 5% critical value of 0.146 

(with a p-value greater than 0.05). 

Nuclear attains stationarity after an additional first ordinary difference and seasonal 

difference (d = 1, D = 1). Initially non-stationary, it records a test statistic of −2.735, 

surpassing the 5% critical value of −3.023 (with a p-value greater than 0.05) in the first step. 

In the second step, it remains non-stationary, with a test statistic of 0.172 compared to the 5% 

critical value of 0.146 (with a p-value less than 0.05). The third step, after an additional 

ordinary difference, finally achieves stationarity, with a test statistic of −6.965 compared to 

the 5% critical value of −3.074 (with a p-value less than 0.05). The fourth step also confirms 

stationarity, with a test statistic of 0.021 and the 5% critical value of 0.146 (with a p-value 

greater than 0.05). 

Hydropower becomes stationary after a seasonal difference (d = 0, D = 1). In the first 

step, it demonstrates stationarity, with a test statistic of −3.144 compared to the 5% critical 

value of −3.049 (with a p-value less than 0.05). In the second step, it continues to remain 

stationary, supported by a test statistic of 0.101 in comparison to the 5% critical value of 
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0.146 (with a p-value greater than 0.05). 

In Italy’s case, coal achieves stationarity after an additional first ordinary difference 

and seasonal difference (d = 1, D = 1). Initially non-stationary, it records a test statistic of 

−2.412, surpassing the 5% critical value of −3.083 (with a p-value greater than 0.05) in the 

first step. In the second step, it remains non-stationary, with a test statistic of 0.400 compared 

to the 5% critical value of 0.146 (with a p-value less than 0.05). Although remaining non-

stationary in the third step after an additional ordinary difference, it achieves stationarity in 

the fourth step, with a test statistic of 0.086 compared to the 5% critical value of 0.146 (with 

a p-value greater than 0.05). 

Hydropower becomes stationary after an additional first ordinary difference and 

seasonal difference (d = 1, D = 1). Initially non-stationary, it records a test statistic of −2.748, 

surpassing the 5% critical value of −3.050 (with a p-value greater than 0.05) in the first step. 

In the second step, it remains non-stationary, with a test statistic of 0.161 compared to the 5% 

critical value of 0.146 (with a p-value less than 0.05). Despite remaining non-stationary in the 

third step after an additional ordinary difference, it achieves stationarity in the fourth step, 

with a test statistic of 0.069 compared to the 5% critical value of 0.146 (with a p-value 

greater than 0.05). 

Renewables become stationary after a seasonal difference (d = 0, D = 1). In the first 

step, they demonstrate stationarity, with a test statistic of −3.734, surpassing the 5% critical 

value of −3.083 (with a p-value less than 0.05). In the second step, they also remain 

stationary, supported by a test statistic of 0.068 compared to the 5% critical value of 0.146 

(with a p-value more than 0.05). 

Table A.3. DF-GLS and KPSS test results (if the data has seasonality) 
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 Germany Italy 

 Natural 

gas 
Nuclear Hydro Coal Hydro Renewables 

 
1. DF-GLS (after seasonal difference) 

Unit root  0 1 0 1 1 0 

Lags 1 3 2 2 3 2 

Test 

statistics 
−3.405 −2.735 −3.144 −2.412 −2.748 −3.734 

1% critical 

values 
−3.633 −3.633 −3.633 −3.679 −3.679 −3.679 

5% critical 

values 
−3.071 −3.023 −3.049 −3.083 −3.050 −3.083 

10% critical 

values  
−2.777 −2.733 −2.757 −2.789 −2.759 −2.789 

 2. KPSS (after seasonal difference) 

Unit root  0 1 0 1 1 0 

Lags 1 3 2 2 3 2 

Test statistics 0.135 0.172 0.101 0.400 0.161 0.068 

1% critical 

values 
0.216 0.216 0.216 0.216 0.216 0.216 

5% critical 

values 
0.146 0.146 0.146 0.146 0.146 0.146 

10% critical 

values  
0.119 0.119 0.119 0.119 0.119 0.119 

 3. DF-GLS (additional first ordinary difference) 

Unit root   0  1 1  

Lags  1  7 9  

Test statistics  −6.965  −1.029 −1.651  

1% critical 

values 
 −3.637  −3.683 −3.683  

5% critical 

values 
 −3.074  −2.891 −2.801  

10% critical 

values 
 −2.780  −2.610 −2.523  

 4. KPSS (additional first ordinary difference) 

Unit root   0  0 0  

Lags  1  7 9  

Test statistics  0.021  0.086 0.069  

1% critical 

values 
 0.216  0.216 0.216  

5% critical 

values 
 0.146  0.146 0.146  

10% critical 

values  
 0.119  0.119 0.119  

Notes: The “ARIMAAUTO algorithm” utilizes the minimum of mean absolute information Criterion (Min MAIC) as a criterion for selecting 

the optimal lags to determine whether the data exhibits stationarity. Since our data is in monthly format, we employ 12 lags for conducting the 

DF-GLS and KPSS tests. In this context, “Unit root” indicates the presence of a unit root in the data. Specifically, when “Unit root” equals 1, 

it signifies the existence of a unit root. 

Table A.4 comprises coal and renewables in Germany as well as natural gas in Italy, 
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variables identified as lacking seasonality based on seasonal unit root test results (Table 2). 

The table encompasses four steps outlined below. In the first step, the DF-GLS test is 

conducted without any difference to assess whether the data is stationary. The second step 

involves the KPSS test to prevent overdifferencing. If the data remains non-stationary after 

steps 1 and 2, the process continues to the third step. In this step, the DF-GLS test is 

performed after the first ordinary difference to ascertain whether the data is stationary. The 

fourth step entails the KPSS test to prevent overdifferencing. 

In the case of Germany, coal achieves stationarity after an additional first ordinary 

difference (d = 1, D = 0). Initially non-stationary, it records a test statistic of −1.117, 

exceeding the 5% critical value of −2.838 (with a p-value greater than 0.05). Despite 

remaining non-stationary in the second step (test statistic of 0.150 compared to the 5% 

critical value of 0.146), the third step, following an additional ordinary difference, finally 

achieves stationarity (test statistic of −4.099, surpassing the 5% critical value of −3.003). The 

fourth step confirms stationarity (test statistic of 0.028 compared to the 5% critical value of 

0.146). 

Renewables become stationary after the first ordinary difference (d = 1, D = 0). 

Initially non-stationary, they record a test statistic of −1.685, exceeding the 5% critical value 

of −2.775. Despite remaining non-stationary in the second step (test statistic of 0.171 

compared to the 5% critical value of 0.146), the third step, following an additional ordinary 

difference, remains non-stationary (test statistic of −1.793, surpassing the 5% critical value of 

−2.773). However, in the fourth step, stationarity is achieved (test statistic of 0.089 compared 

to the 5% critical value of 0.146). 

Interestingly, for renewables in Germany, no first ordinary difference was applied 
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despite the initial non-stationarity. Paradoxically, forecasting results from the non-stationary 

state appear to perform better than those from the stationary state, with a smaller gap between 

observed and predicted values. 

In Italy’s case, natural gas is stationary without any difference (d = 0, D = 0). Initially 

non-stationary, it records a test statistic of −1.201, exceeding the 5% critical value of −2.750. 

The second step confirms stationarity (test statistic of 0.140 compared to the 5% critical value 

of 0.146). 

Table A.4. DF-GLS and KPSS test results (if the data has no seasonality) 

 Germany Italy 

 Coal Renewables Natural gas 

 1. DF-GLS (non-difference) 

Unit root  1 1 1 

Lags 9 11 11 

Test statistics −1.117 −1.685 −1.201 

1% critical 

values 
−3.588 −3.588 −3.633 

5% critical 

values 
−2.838 −2.775 −2.750 

10% critical 

values  
−2.561 −2.501 −2.476 

 2. KPSS (non-difference) 

Unit root  1 1 0 

Lags 9 11 11 

Test statistics 0.150 0.171 0.140 

1% critical 

values 
0.216 0.216 0.216 

5% critical 

values 
0.146 0.146 0.146 

10% critical 

values  
0.119 0.119 0.119 

 3. DF-GLS (after first ordinary difference) 

Unit root  0 1  

Lags 3 11  

Test statistics −4.099 −1.793  

1% critical 

values 
−3.591 −3.591  

5% critical 

values 
−3.003 −2.773  

10% critical 

values  
−2.714 −2.499  
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 4. KPSS (after first ordinary difference) 

Unit root  0 0  

Lags 3 11  

Test statistics 0.028 0.089  

1% critical 

values 
0.216 0.216  

5% critical 

values 
0.146 0.146  

10% critical 

values  
0.119 0.119  

Notes: The “ARIMAAUTO algorithm” utilizes the minimum of mean absolute information criterion (Min MAIC) as a criterion to select 

optimal lags and assess the stationarity of the data. Given that our data is in monthly format, we employ a total of 12 lags when conducting 

the DF-GLS and KPSS tests. In this context, “Unit root” refers to the presence of a unit root in the data, with “Unit root” being equal to 1 

indicating its presence. 

1.4. Final model selection 

In Table A.5, we present the model and AIC values for five energy sources in both 

Germany and Italy. The selection of the best-fitted model for each of the five sources is based 

on the smallest AIC. 

Table A.5. Candidates of best-fitted model 

 Germany Italy 

Model Coal 
Natural 

gas 
Nuclear Hydro 

Renewabl

es 
Coal 

Natural 

gas 
Hydro 

Renewabl

es 

1 

𝑝 2 2 0 0 2 0 0 0 0 

𝑞 2 2 0 0 2 0 0 0 0 

𝑃 1 1 0 0 1 0 0 0 0 

𝑄 1 1 0 0 1 0 0 0 0 

𝑐𝑜𝑛𝑠𝑡 1 1 0 1 1 0 1 0 1 

AIC 683.2366 463.0139 460.2482 290.2372 727.3991 74.7320 401.3156 165.8530 114.8239 

2 

𝑝 0 0 1 1 0 1 1 1 1 

𝑞 0 0 0 0 0 0 0 0 0 

𝑃 0 0 1 1 0 1 1 1 1 

𝑄 0 0 0 0 0 0 0 0 0 

𝑐𝑜𝑛𝑠𝑡 1 1 0 1 1 0 1 0 1 

AIC 705.4674 508.3125 434.7499 224.6255 776.7684 56.6979 293.9097 153.4951 98.6432 

3 

𝑝 1 1 0  1  0   

𝑞 0 0 1  0  1   

𝑃 1 1 0  1  0   

𝑄 0 0 1  0  1   
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𝑐𝑜𝑛𝑠𝑡 1 1 0  1  1   

AIC 688.0587 465.8801 426.6752  733.1767  335.7711   

4 

𝑝 0 0   0     

𝑞 1 1   1     

𝑃 0 0   0     

𝑄 1 1   1     

𝑐𝑜𝑛𝑠𝑡 1 1   1     

AIC 687.4156 478.4234   746.4934     

 

Table A.6 displays the outcomes of the Portmanteau white noise test. In the German 

context, data labeled “With war” and “Without war” for coal exhibit characteristics of white 

noise, as evidenced by p-values surpassing 0.05. Similarly, for natural gas, both “With war” 

and “Without war” datasets are classified as white noise, with p-values exceeding 0.05. 

Additionally, data labeled “With war” and “Without war” for nuclear, hydro, and renewables 

are all identified as white noise, with their respective p-values greater than 0.05. 

In Italy, data labeled “With war” and “Without war” for coal are categorized as white 

noise, supported by p-values greater than 0.05. For natural gas in Italy, both “With war” and 

“Without war” datasets are considered white noise, with p-values exceeding 0.05. Moreover, 

data labeled “With war” and “Without war” for hydro and renewables in Italy are recognized 

as white noise, with p-values greater than 0.05. 

Table A.6. Portmanteau white noise test 

 Germany 

 
Coal Natural gas Nuclear Hydro Renewables 

 W C W C W C W C W C 

Test 

statistics 
6.1404 11.2287 9.0606 15.6700 17.1073 16.2324 5.6871 6.1631 6.4300 6.3328 

p-value 0.9088 0.5094 0.6977 0.2068 0.1456 0.1808 0.9310 0.9076 0.8929 0.8984 

 
Italy 

 Coal Natural gas Nuclear Hydro Renewables 
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W C W C W C W C W C 

Test 

statistics 
9.8155 10.0536 10.1044 11.5565 - - 13.4570 12.5896 15.3327 14.8814 

p-value 0.6321 0.6113 0.6068 0.4819 - - 0.3367 0.3996 0.2237 0.2480 

Notes: We use 12 lags for the test since our data is monthly data. Each source has “W” and “C,” each of which means “With war” and “Without 

war,” respectively. 
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