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Abstract 

 

The Impact of Twin Transition on Firms’ Business Performance: 

Empirical Evidence from Korean Manufacturing Firms 

 

Driven by the critical global demand for twin transition, the simultaneous pursuit of 

decarbonization and digitalization, the objective of this study is to empirically examine the impact 

of the joint adoption of eco-innovation and digital technologies on sales performance in the Korean 

manufacturing sector and to identify the implications of this strategic response to both market 

pressures and environmental challenges. The analysis, which uses data from the Korea Innovation 

Survey 2022 and employs propensity score matching techniques, shows significant positive effects 

on sales for firms that adopt both eco-innovation and digital technology. Specifically, the average 

treatment effect on the treated, in terms of increases in sales for firms that adopted both an eco-

innovation and a new digital technology, was estimated at 46.1% and 38.6%. The study also 

explores the impact of combining eco-innovation with specific digital technologies. The results 

show significant sales increases for firms that combined eco-innovation with big data, cloud 

computing, or 5G telecommunications. These findings highlight the strategic importance of the 

twin transition, suggesting that firms that integrate eco-innovation with such technologies can 

enhance their business performance. This research underscores the need for supportive policies 

and incentives that promote sustainable growth and a competitive advantage by supporting the 

joint adoption of eco-innovations and new digital technologies. 
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1 Introduction 

 
In recent years, the global business landscape has been reshaped by two pivotal 

megatrends: decarbonization and digitalization. These trends, often referred to collectively as the 

twin transition, represent an irresistible force driving profound changes across industries and 

economies worldwide (Muench et al., 2022). Decarbonization, the shift toward low-carbon 

energy sources and processes, is not just an environmental goal but also an economic one, 

characterized by structural change and innovation (Ayres & van den Bergh, 2005). It reflects 

growing recognition of the need to address the urgent challenges posed by climate change (Fay 

et al., 2015). Simultaneously, digitalization—the integration of digital technologies into all 

aspects of business—is transforming how companies operate, compete, and deliver value to 

customers  (Colli et al., 2021). 

Specific cases underscore the importance of the twin transition. According to Muench et 

al. (2022) and Celeste & Dominioni (2023), this transition has become a key priority for 

European businesses, reflecting a broader global trend. Additionally, Faivre et al. (2023) have 

highlighted a surge in investments by EU and US firms in digital and green technologies, 

signaling a widespread corporate response to these megatrends. Moreover, external shocks such 

as the COVID-19 pandemic and escalating concern over climate change have accelerated this 

dual transition, compelling firms to adapt rapidly (Herrmann et al., 2014). 

The urgent need to motivate firms toward long-term commitments to both 

decarbonization and digitalization is increasingly evident. Kraus et al. (2020) have argued that in 

recent decades, environmental concerns have increasingly influenced industrial practices. In 

addition, Rehman et al. (2023) have argued that the quest for technological advancement has 

driven the fourth industrial revolution, commonly known as Industry 4.0. This revolution is 
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associated with several contemporary technological developments including the internet of 

things (IoT), cyber-physical systems, digitalization, cloud computing, artificial intelligence (AI), 

automation and robotics, as well as additive manufacturing techniques. This leads me to two key 

questions: 1) How can stakeholders motivate firms to engage in eco-innovation and digital 

transformation? 2) What benefits can firms reap from pursuing both types of innovation? This 

study examines how a joint focus on eco-innovation and digital transformation can influence a 

company’s business performance, a strong internal driver of change. 

Despite the recognized importance of the twin transition, there is a scarcity of research on 

the joint adoption of these trends and its impact on firm performance. The literature has 

predominantly focused on the drivers of such change, its measurement, and the effects of the 

adoption of the two respective trends on firm performance, while acknowledging the mutual 

impact of eco-innovation and digitalization (Hojnik, 2017). However, the effects of the 

simultaneous pursuit of eco-innovation and digitalization, particularly on sales, remain 

underexplored. To address this gap, this study proposes an empirical test using propensity score 

matching to examine the causal effect of the twin transition on firms’ business performance. It 

aims to provide a comprehensive understanding of the effect of the joint adoption of eco-

innovation and digitalization by comparing two types of firms: adopters of both trends and those 

who adopted neither.  

Furthermore, the response of South Korean manufacturing firms to eco-innovation and 

digitalization, framed within the country’s Green New Deal and overarching digital strategy, 

provides a distinctive context in which to examine the impacts of the twin transition. In 2008, 

Korea became the first OECD country to produce a comprehensive green growth strategy 

(Kamal-Chaoui et al., 2011), and its Green New Deal and the Digital New Deal it adopted in July 
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2020 aim to address climate change and to promote recovery from the COVID-19 pandemic, 

similarly to the EU’s Green Deal (Kamal-Chaoui et al., 2011). Manufacturing firms are not only 

foundational to the nation’s status as a global power (Herrmann et al., 2014), but also major 

contributors to climate change (Zailani et al., 2012). The COVID-19 pandemic further 

accelerated this trend, motivating this research on the effects of the twin transition on Korean 

manufacturing firms. 

Thus, the objective of this study is to address an empirical gap by examining the impact of 

the joint adoption of eco-innovation and new digital technologies on sales performance in the 

Korean manufacturing sector and to identify the implications of this strategic response to both 

market pressures and environmental challenges. 

The remainder of this study is structured as follows. Section 2 reviews the relevant 

literature, which laid the groundwork for the research. Section 3 and 4, respectively, describe the 

data and the methods used to investigate the impact of the twin transition on firm performance. 

Section 5 presents the results of the empirical analysis. Lastly, Section 6 discusses the findings in 

context and their implications for practice and concludes the study, summarizing its key insights 

and suggesting directions for future research. 
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2 Literature Review 

 
2.1. Twin Transition 

The concept of the twin transition is defined as an integrated process of decarbonization 

and digitalization. As highlighted by Fouquet & Hippe (2022), European economies have 

embraced this structural transformation brought about by the coevolution of energy and 

communication technologies, which in turn has led to the development of the high-tech and 

Information Communication Technology (ICT) sectors. In addition, Celeste & Dominioni (2023) 

have outlined the concept of a twin transition where digital technologies and policies aimed at 

reducing greenhouse gas emissions mutually support each other. Digital technologies can 

enhance the efficiency of energy management systems in both domestic and industrial settings, 

leading to reduced energy consumption and lower emissions. Also, policies to mitigate 

greenhouse gas emissions can drive businesses to adopt more energy-efficient digital 

technologies. 

Furthermore, the importance of the twin transition extends beyond national frameworks 

to individual business strategies (Uhrenholt et al., 2022). Adopting both green initiatives and 

technological innovations is becoming a cornerstone for business success as well as the public 

welfare. This has been further underscored by Rehman et al. (2023), who noted that the COVID-

19 pandemic emphasized the need for technology and environmental sustainability within the 

modern corporate landscape, pushing firms to make efforts toward achieving these dual goals.  

While the trend toward twin transition has accelerated, research exploring the combined 

impact of eco-innovation and digitalization on business performance has remained scarce. 

Antonioli et al. (2018) have examined the impact of the combined adoption of ICT and 

environmental innovation on firms’ labor productivity. Van Der Krogt et al. (2023) have also 
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investigated the impact of the twin transition on the business performance of small and medium-

sized enterprises (SMEs) in the construction sector. While these studies have provided important 

insights, the current examination of the twin transition as a resilience strategy in the South 

Korean manufacturing industry during and after the COVID-19 pandemic provides a new 

context for research in this area. 

 

2.2. Eco-innovation 

Eco-innovation, defined as the development, production, application, or utilization of a 

new product, service, or process that reduces environmental risks, pollution, or resource use 

throughout its lifecycle (Arundel & Kemp, 2009; Ron Kemp & Kemp, 2010), is central to 

sustainable growth. Eco-innovation can refer to innovations to products or business processes 

that mitigate environmental impacts by conserving energy or by minimizing waste, climate 

change, water usage, air pollution, or coal, oil, or electricity usage (Favot et al., 2023). OECD 

(2009) has defined eco-innovation as follows: “It is innovation that reflects the concept’s explicit 

emphasis on a reduction of environmental impact, whether such an effect is intended or not. 

Additionally, it is not limited to innovation in products, processes, marketing methods and 

organisational methods, but also includes innovation in social and institutional structures.” 

Additionally, various empirical studies have highlighted the significance of demand-pull 

factors within the eco-innovation framework, illustrating that demand factors are crucial for 

fostering eco-innovation (Horbach, 2008; Wagner, 2007). Specifically, Horbach (2008) 

demonstrated that among German manufacturing firms, demand, particularly a firm’s 

expectation of increased turnover, serves as a key driver of eco-innovations. Similarly, Wagner 

(2007) suggested that “collaboration with predominantly environmentally concerned 
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stakeholders—partly reflecting the activities of consumer protection associations—plays an 

important role for the generation of eco-innovative products.” Overall, these findings underscore 

the idea that demand factors, calls for corporate responsibility, and consumer preferences for 

environmentally friendly products and processes significantly influence firms’ decisions to invest 

in eco-innovation. 

However, empirical studies, such as those reviewed by Hojnik (2017), have produced 

mixed findings regarding the impact of eco-innovation on firms’ performance. While some have 

suggested that environmental efforts may impose financial burdens (Ghisetti & Rennings, 2014; 

Zeng et al., 2011), others have indicated that sustainable practices can lead to enhanced 

efficiency, new growth opportunities, higher profits, and a competitive advantage (Farza et al., 

2021; Kim & Brown, 2019). These contradictions emphasize the complexity of eco-innovation’s 

economic effects and the need for deeper investigation, particularly in the context of the strong 

version of the Porter hypothesis, which suggests that more stringent environmental regulations 

lead firms to adopt eco-innovation (Cleff & Rennings, 1999; Porter & Van der Linde, 1995). 

 
 
2.3. Digitalization 

Technology has been considered the main factor in economic growth, as mechanized 

production can be substituted for labor (Mokyr et al., 2015). Digitalization refers to the process 

by which business operations are transformed through the integration of digital technologies, a 

process that impacts organizational efficiency and market dynamics. It encompasses the use of 

cutting-edge technologies, such as big data, cloud computing, IoT, 5G telecommunications, AI, 

3D printing, robotics, and blockchain, to improve production processes and supply chain 

management (Jung & Gómez-Bengoechea, 2022). These technological integrations may not only 
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optimize current processes but also open up new business models or opportunities for growth and 

innovation. For instance, utilizing big data analytics allows companies to make better informed 

decisions by analyzing vast amounts of data to identify trends and patterns. This can lead to 

improved customer insights, product development, and market trend forecasting. Cloud 

computing enables businesses to access and utilize computing resources over the internet on 

demand. 5G networks provide faster data transmission rates, which improve the connectivity and 

responsiveness of IoT devices and mobile services that are essential for real-time operations. 

These technologies can be regarded as a form of process innovation that is driven by the pursuit 

of efficiency and cost minimization (Klepper, 1996; Utterback & Abernathy, 1975). According 

to Santoalha et al. (2021), who investigated relatedness to find a key driver of new 

specializations in the domain of green technology, a region’s e-skills endowment is a positive 

predictor of its ability to specialize in new technological domains, especially green technology. 

The drive toward technological advancement has fueled the Industry 4.0 revolution, 

which is associated with a spectrum of cutting-edge technical developments (Benassi et al., 

2022; Martinelli et al., 2021). These include IoT, the fusion of computational and physical 

systems, the digitization of processes, cloud-based computing services, the application of AI, the 

rise of automated and robotic systems, and the growth of 3D printing technologies. As a 

consequence of these innovations becoming more commercialized and widespread, businesses 

have had to undergo significant transformations in their operational approaches (Rojko, 2017). 

The applied literature on the impact of ICT has shown that facilitating such technologies 

provides novel opportunities for firm-level actions that result in higher productivity. Niebel et al. 

(2019) have examined the relationship between the firm’s use of big data and product 

innovation. Rammer et al. (2022) investigated the relationship between AI and industrial 
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innovation, suggesting that the use of AI technologies is associated with better results in terms of 

product and process innovation. Antonioli et al. (2024) have investigated the relationship 

between robot adoption and product innovation. Although some studies have examined the 

relationship between digitalization and business performance (Jardak & Ben Hamad, 2022; Li et 

al., 2022; Ren & Li, 2023), the scope of digitalization examined in research models of 

managerial strategies has not often extended to advanced technologies like AI, big data, or cloud 

computing.  

 

2.4. Identification of Gaps & Research Question 

The literature on the integration of eco-innovation and digitalization within the 

manufacturing sector, particularly in South Korea, underscores a critical intersection of 

environmental and technological advancements shaping the future of industry. While the twin 

transition is increasingly recognized as a transformative strategy for sustainable and 

technological advancement, empirical research, particularly within the Korean context, is 

lacking. Studies such as those by Antonioli et al. (2018) and Van Der Krogt et al. (2023) provide 

foundational insights on the impact of these transitions on labor productivity and business 

performance in various sectors. However, to date there has been no targeted research on the twin 

transition among Korean manufacturing firms. Furthermore, the literature points to the pivotal 

role of demand factors in catalyzing eco-innovation, as evidenced by Horbach (2008) and 

Wagner (2007). These studies suggest that market dynamics and consumer expectations play a 

crucial role in shaping firms’ investments in green technologies. Digitalization, encompassing 

IoT, AI, and blockchain, has been found to transform business operations by improving 

efficiency and minimizing costs (Jung & Gómez-Bengoechea, 2022). The Industry 4.0 
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revolution, galvanized by advancements in IoT, AI, automation, and 3D printing, has 

significantly altered business operations (Benassi et al., 2022; Martinelli et al., 2021; Rojko, 

2017). Additionally, the discourse on the economic impact of these innovations remains mixed, 

suggesting a complex relationship between sustainable practices and financial performance that 

requires deeper examination within specific industrial contexts.  

There is a clear gap in the literature regarding the combined effects of eco-innovation and 

digitalization. Understanding the joint adoption of these innovations is crucial for 

comprehensively assessing their impact on business performance. Despite the separate strands of 

research on eco-innovation and digitalization, there is a conspicuous gap in terms of studies that 

explore their joint impact on firm performance, particularly sales. This gap is particularly notable 

in the context of Korean manufacturing firms, where the synergy between eco-innovation and 

digital transformation remains unexplored. 

This study investigates whether firm performance is improved through the 

complementary adoption of both types of innovation, in the context of Korean manufacturing. 

Ballot et al. (2015) has examined complementarities in performance among product, process, and 

organizational innovations, and analyzed conditional complementarities in French and UK 

manufacturing firms. The findings suggest that the presence of complementarities depends on the 

national context as well as firms’ size and capabilities. Similarly, the complementarity of eco-

innovation and digital technology adoption may depend on the national context, firm size, and 

firm capabilities. In fact, national policies and regulations can influence the extent of the 

complementarity between eco-innovation and digital technology adoption. Hullova et al. (2016) 

have also addressed the complementarity of process and product innovation, which are likely to 

emerge in process industries, where it is appropriate to hypothesize a progression from process to 
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product. A similar complementarity can be observed in the adoption of eco-innovation and 

digital technology. For instance, eco-innovation (e.g., energy-efficient production processes) can 

be enhanced through the adoption of digital technologies (e.g., real-time energy monitoring via 

IoT sensors). Digital technologies can act as tools that maximize the effects of eco-innovation.  

The review of the extant literature suggests a critical research question: How does the 

joint adoption of eco-innovation and digitalization impact the business performance of Korean 

manufacturing firms? Drawing on the literature to offer a new perspective on the benefits of twin 

transition, the study hypothesizes that dual adoption of eco-innovation and digitalization 

positively affects firms’ sales and operational efficiency. The reviewed literature highlights the 

evolving significance of the twin transition and underscores the need for integrated strategies that 

encompass both eco-innovation and digitalization. This literature review sets the stage for the 

empirical investigation of the impact of twin transition on firm performance in Korean 

manufacturing, which is intended to address the identified research gaps and contribute valuable 

insights into sustainable and technologically advanced business practices. 
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3 Data 

 
3.1. Data 

The Korea Innovation Survey (KIS) is the main source of data for this empirical study. 

This survey follows the guidelines of the OECD Oslo Manual and the Community Innovation 

Survey (CIS), which assesses innovation in European countries. The KIS is conducted 

nationwide by the Science and Technology Policy Institute (STEPI), and it aims to provide 

comprehensive insights into the innovation activities of manufacturing firms and includes 

information such as firm size, age, and sales over the past three years.  

The KIS 2022 is of particular interest for this study as it provides a unique opportunity to 

explore the joint adoption of eco-innovation and advanced digital technology and its effects on 

sales. This version of the KIS introduced new sections on “Environment and Business 

Innovation” and “Digital Transformation and Business Innovation,” covering firms’ respective 

environmental and digital innovation initiatives. These sections include questions about whether 

the surveyed firms have introduced environmental innovations or new digital technologies. The 

survey did not collect detailed information as to the timing of each firm’s introduction of an eco-

innovation or new digital technology within the three-year period it examines, thus the 

innovations might have been introduced at any time between 2019 and 2021.  
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Table 1. The key questions and answers from KIS 2022 

 Questions Answers (Adopt/Non-Adopt) 

1 Has your firm adopted 

any innovations with 

environmental benefits1 

in the past three years 

(2019–2021)? 

Material or water use reduction per unit of production 

Energy consumption reduction or carbon footprint (CO2 emissions) reduction 

Reduction of air pollution, water pollution, soil pollution, or noise pollution 

Replacement of materials with substitutes that pollute less or are less harmful to 

the environment 

Partial substitution of fossil energy with renewable energy sources 

Recycling of waste, water, or materials for own use or for sale 

Reduction in energy use or carbon footprint (CO2 emissions) for the final user 

Reduction of air pollution, water pollution, soil pollution, or noise pollution for the 

final user 

Promotion of recycling after product use 

Extension of product life through durable goods 

2 Has your firm 

introduced any new 

digital technologies in 

the past three years 

(2019–2021)? 

Big data 

AI 

IoT 

Cloud computing 

Robotics 

3D printing 

Mobile (5G) technology 

Augmented or Virtual Reality (AR/VR) 

Blockchain 

Source: Korea Innovation Survey 2022 
 

The KIS consists of a nationally representative sample of 4,000 manufacturing firms 

across all sectors, providing an overview of the Korean manufacturing industry. The sampled 

population for the KIS 2022 consisted of a total of 52,460 manufacturing enterprises classified 

under Section C (Manufacturing) in the 10th edition of the Korean Standard Industrial 

 
1 Innovations with environmental benefits: Innovations in products or business processes that have a positive or less 
negative impact on the environment. Environmental benefits could be a primary goal of the innovation or a 
byproduct of other goals. The environmental benefits of the innovation could occur during the production of goods 
(products/services) or while the goods are consumed/used by the end user. The end user could be individuals, other 
businesses, or the government.  
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Classification (KSIC) that conducted normal business activities during the three-year period 

from 2019 to 2021 and had at least 10 regular employees. STEPI used a stratified sample design 

for the KIS 2022. The sample size for the analyses was reduced from 4,000 to a final sample of 

2,185 firms due to missing values.  

 

3.2. Treatment variables 

In line with Antonioli et al. (2018), my study empirically examines how 

complementarity in innovation adoption affects firms’ business performance. The treatment 

variable used in this study is the joint adoption of an eco-innovation and a new digital 

technology, with each type of adoption represented as a binary variable. Eco-innovation adoption 

is coded 1 if a firm adopted an eco-innovation and 0 if it did not. Similarly, the adoption of a new 

digital technology is coded 1 if a firm adopted a new digital technology and 0 if it did not. Then, 

the joint adoption of eco-innovation and digital technology is operationalized using a binary 

treatment variable where 1 indicates the adoption of both types of innovation and 0 represents all 

other cases. This binary approach facilitates the examination of the synergistic effects of eco-

innovation and digitalization on sales, distinguishing firms that engage in both from those that do 

not.  

 

3.3. Outcome variables 

In this study, sales performance is operationalized as the primary outcome variable, 

measured in terms of millions of won. This approach is grounded in the notion that sales 

performance, a direct indicator of business success, effectively reflects the economic 

consequences of innovation activities. The transformation of sales data into a logarithmic form is 
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a standard practice aimed at addressing issues associated with skewed distributions, which are 

often caused by outliers or a few exceptionally high values in the dataset. The rationale for using 

a logarithmic transformation lies in its ability to render the data more amenable to normal 

distribution assumptions, thereby enabling more accurate and reliable statistical analyses. 

Additionally, this transformation stabilizes variance across the dataset, ensuring that the spread 

of sales figures is more uniform across different levels of the independent variables, which in this 

context include the adoption of eco-innovations and digital technologies. To correct for the 

skewedness inherent in sales data, these figures are converted to a logarithmic scale. 

 
3.4. Summary statistics 

Table 2. Summary Statistics 

 (1) (2) (3) (4) (5) 
Variable Full sample Only Eco-

innovation 
Only Digital 
Technology 

Both Neither 

log(𝑠𝑎𝑙𝑒𝑠)!"!# 10.41 10.11 9.47 11.18 10.03 
 (1.900) (1.717) (1.711) (1.811) (1.842) 
log(𝑅&𝐷	𝑒𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒)!"!# 6.45 6.40 5.56 7.17 5.97 
 (1.696) (1.565) (1.387) (1.806) (1.374) 
R&D Staff Ratio 10.52 10.34 11.78 11.17 9.38 
 (9.457) (8.668) (10.61) (10.40) (8.022) 
Firm’s age 24.45 22.67 20.18 27.81 23.09 
 (14.42) (13.72) (11.79) (15.46) (13.65) 
Observations 2,185 362 273 829 721 

Notes: The analysis covers a total sample of 2,185 firms, segmented into four categories: (2) Firms that adopted only 
an eco-innovation (362 firms), (3) Firms that adopted only a new digital technology (273 firms), (4) Firms that adopted 
a new eco-innovation and a new digital technology (829 firms), and (5) Firms that adopted neither an eco-innovation 
nor a new digital technology (721 firms). The reported values represent the mean (average) values for each variable 
across the different firm categories, and standard deviations are presented in parentheses.  
 

Table 2 presents a comprehensive overview of how the firms in the sample are 

categorized based on their adoption of eco-innovation and digital technology. The detailed 

breakdown by category offers a multifaceted view of the current business landscape. The 

categorization creates five distinct groups: the full sample (all firms), firms with eco-innovation 
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only, firms with digital innovation only, firms with both, and firms with neither. This 

classification allows for a detailed analysis of each group’s characteristics and how they relate to 

the adoption of eco-innovation and new digital technologies. 

Notably, firms that adopted both an eco-innovation and a new digital technology (both) 

exhibited the highest average log sales in 2021, suggesting that integrating both eco-friendly 

innovation and digital advancements might be associated with better sales performance. The 

𝑙𝑜𝑔(𝑅&𝐷	𝑒𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒)!"!# and R&D staff ratio metrics provide insight into the firms’ 

investments in innovation and development. In particular, firms in the ‘both’ category have 

higher averages on both metrics, suggesting that a significant commitment to research and 

development could be driving these firms’ superior sales figures. The investment in R&D is not 

only monetary but also human, as indicated by the R&D staff ratio. It is interesting that firms 

that adopted only a new digital technology have the highest average R&D staff ratio, suggesting 

a labor-intensive approach to their digital initiatives. 

The firms’ age distribution reveals variation in the propensity to adopt new technologies 

and sustainable practices, with older and more established firms more likely to embrace both 

eco-innovation and digital technology. This reflects maturity in their resource allocation and 

organizational structure that seems to be conducive to technological and sustainable 

advancements. The distribution of firm size and the technological intensity of their industries is 

presented in Appendix Figures A.1 and A.2. 
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4 Methods 

 
4.1. Ordinary Least Squares (OLS) 

I start off the analysis using OLS. I investigate the relationship between a firm’s sales 

and the combined implementation of eco-innovation and digital technology through an OLS 

estimator. The model is expressed as equation (1): 

														𝑌$ = 𝛼 × (𝐸𝑐𝑜$ × 𝐷𝑖𝑔𝑖$) + 𝛽 × 𝐸𝑐𝑜$ + 𝛾 × 𝐷𝑖𝑔𝑖$ + 𝑋′$ + 𝜖$                     (1) 

where 𝑌$ is the outcome variable, the log of a firm i’s sales in 2021. 𝐸𝑐𝑜$ is coded 1 if the 

firm i has adopted an eco-innovation and 0 if it has not. 𝐷𝑖𝑔𝑖$ is coded 1 if the firm i has adopted 

a new digital technology and 0 if it has not. The primary variable of interest is the interaction 

term 𝐸𝑐𝑜$ × 𝐷𝑖𝑔𝑖$, which represents the combined effect of adopting an eco-innovation (𝐸𝑐𝑜$) 

and a new digital technology (𝐷𝑖𝑔𝑖$). The main coefficient of interest, 𝛼, captures the impact of 

this joint adoption on the sales of the firm. Additionally, to account for the individual 

contributions of each type of innovation, both 𝐸𝑐𝑜$ and 𝐷𝑖𝑔𝑖$ are also included separately in the 

model. The model also incorporates a set of control variables, 𝑋$%, which capture a variety of 

firm-specific characteristics such as the firm’s age, R&D expenditures, R&D staff ratio, the 

firm’s size, its technological intensity, and the location of the firm’s headquarters, allowing for 

heterogeneity and controlling for fixed effects across different firm characteristics. The 

classification for technological intensity follows the OECD taxonomy (Galindo-Rueda & Verger, 

2016). The error term 𝜖$ addresses unobserved factors that might affect sales. 

Despite the utility of the OLS method, there is the possibility of endogeneity in the 

interaction term, 𝐸𝑐𝑜$ × 𝐷𝑖𝑔𝑖$, especially if it is correlated with the error term 𝜖$, potentially 

leading to biased estimates. This correlation implies that the impact of joint adoption might be 

over- or under-estimated if determined solely through OLS, due to selection bias. 
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4.2. Identification strategy 

To determine the causal impact of the joint adoption of the two types of innovation on 

sales performance, it is essential to address the potential endogeneity arising from unobserved 

variables that may influence both adoption of these innovations and sales outcomes. This study 

employs a propensity score matching (PSM) approach to mitigate these biases. Using PSM, the 

study aims to match firms that have adopted both an eco-innovation and a new digital technology 

(the treatment group) with similar firms that have not done so (the control group), based on 

observable characteristics before the adoption. This method helps to reduce sample selection bias 

and simulate a randomized controlled trial environment, although it may reduce the sample size 

after matching. 

 

4.3. Propensity Score Matching 

PSM is utilized to estimate the causal impact of the joint adoption of eco-innovation and 

digital technologies on sales by creating a comparable control group in a non-experimental 

setting. The process involves two main stages: estimating the probability of adopting both 

innovations through a binary choice model and second, matching firms based on the estimated 

propensity scores. This method enhances the estimation of causal effects by ensuring 

comparability between the treated and control groups based on observed characteristics. It is 

crucial to ensure that the common support condition is met, meaning that each firm in the 

treatment group has a comparable firm in the control group with a similar propensity score, 

which makes the matching process and the estimates of the reliability of the treatment effect 

valid.  

To examine the impact of joint adoption of eco-innovation and digital technologies on 

firms’ sales, a sales outcome equation for 𝑌$ is specified in equation (2):  
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                                                 𝑌$ = 𝑋′$ + 𝛿 × 𝑇$ + 𝜖$                                                    (2) 

where 𝑌$ represents the log of a firm i’s sales in 2021, 𝑋′$ 	denotes the firm i’s 

characteristics, 𝑇$ is a binary indicator of the joint adoption. 𝛿 measures the effect of the 

treatment on the outcome variable. However, since the joint adoption variable is endogenous in 

the outcome equation because of its potential correlation with the unobservable covariates, 𝜖$, 

using the OLS estimator to assess the impact of joint adoption of these innovations on firms’ 

sales may result in inconsistent estimates and misleading conclusions. For a more rigorous 

analysis, firms that have adopted both an eco-innovation and a new digital technology are 

designated as the treatment group, whereas firms that have adopted neither are assigned as the 

control group in this matching process. This approach ensures clarity in assessing the joint 

impact on sales, avoiding the ambiguity that might arise from comparing firms that adopted only 

one of these innovations to those that adopted both or neither. There are two steps to the PSM 

approach: first, estimating the propensity (p-score) of adoption using a binary choice model 

(logit or probit), and second, matching treated and control firms based on the predicted p-scores. 

The average treatment effect on the treated (ATET) was given as follows in equation (3): 												 

𝐴𝑇𝐸𝑇 = 𝐸(𝑌#$ − 𝑌"$|𝑃(𝑋$)) = 𝐸(𝑌#$|𝑃(𝑋$), 𝑇$ = 1) − 𝐸(𝑌"$|𝑃(𝑋$), 𝑇$ = 0)               (3) 

where 𝑌#$ and 𝑌"$ are the potential outcomes for the firm i if it is treated and untreated, 

respectively. 𝑃(𝑋$) represents the propensity score, the probability of firm i receiving treatment 

given its covariates. The ATET is defined as the expected difference in outcomes between 

treated and untreated firms, conditional on propensity scores. This method assumes common 

support across treated and untreated firms, ensuring a valid comparison by maintaining overlap 

in their propensity scores. 
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5 Empirical Results 

 
5.1. OLS results 

Despite these methodological challenges, the regression analysis yielded significant results, 

as shown in Table 3. The coefficient for the main regressor, 𝛼, is statistically significant at the 

5% significance level, with a value of 0.134 in Model (3). This indicates a significant impact of 

the joint adoption of an eco-innovation and a new digital technology on firm sales, suggesting 

that there is a statistically significant difference in logarithmic sales between firms that have 

adopted both types of innovations and those that have not. The coefficient of 0.134 implies that 

firms adopting both types of innovation experienced an approximate 13.4% increase in sales. 

Model adjustments and the evaluation of various model specifications (as shown in Table 3) led 

to the determination that Models (2) and (3) provide a more accurate estimation of the 

relationship than Model (1).  

 
  



 27 

Table 3. Multiple Regression using OLS 

 (1) (2) (3) 
Variable  log(𝑠𝑎𝑙𝑒𝑠)!"!#  
 Eco-innovation×Digital Transformation 
 

1.623*** 

(0.166) 
0.427*** 

(0.104) 
0.134** 

(0.0647) 
 Eco-innovation 0.0808 -0.211*** -0.0169 
 (0.113) (0.0705) (0.0439) 
 Digital Transformation -0.552*** 

(0.124) 
-0.0468 
(0.0754) 

-0.0673 
(0.0489) 

	log(𝑅&𝐷𝐸𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒)!"!# 
 

 0.799*** 
(0.0203) 

0.310*** 

(0.0173) 
 R&D Staff Ratio  -0.0452*** -0.0155*** 
  (0.00201) (0.00182) 
 Firm’s Age  0.0224*** 0.00518*** 
  (0.00201) (0.00129) 
Fixed effects    
 Firm’s size No No Yes 
 Firm’s technological intensity No No Yes 
 Firm’s region No No Yes 
Observations 2,185 2,185 2,185 
Adjusted R-squared 0.109 0.678 0.868 

Notes: This table presents the estimated coefficients from three regression models. The main regressor of interest, the 
interaction term between Eco-innovation and Digital Transformation, is noteworthy. Control variables accounted for 
in the models are as follows: firm size, technological intensity, and the location of a firm’s headquarters. Robust 
standard errors are reported in parentheses below each coefficient. * p < 0.1, ** p < 0.05, *** p < 0.01 
 

5.2. Estimation of Propensity Scores 

The sample was divided into two groups to estimate the propensity scores of adopting 

both an eco-innovation and a new digital technology: one group that includes firms that have 

adopted both, and another group that includes firms that adopted neither. 

p-scores are estimated utilizing the observed characteristics of the firms in the first stage. 

The firm characteristics included in the analysis are as follows: R&D expenditures, R&D staff 

ratio, firm size, firm’s age, technological intensity of a firm’s industry, and the location of the 

firm’s headquarters. These characteristics are chosen because they are likely to influence both the 

decision to adopt the relevant innovations and the firms’ sales performance. Secondly, firms in the 

treatment group are matched with firms in the control group that have similar propensity scores, 
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ensuring that the matched groups are comparable on the observed characteristics. To ensure a 

robust matching process, I included all 15 administrative regions as locations of firms’ 

headquarters in the matching methods. This allowed me to control for unobserved region-level 

characteristics and region-specific economic conditions.  
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Table 4. Coefficients and standard errors in the logistic regression of propensity score matching 

Variable Coefficient Robust Std. Error 

log(𝑅&𝐷	𝑒𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒𝑠)!"!# 0.182*** 0.058 
R&D Staff Ratio 0.008 0.008 
Firm’s Age 0.008* 0.005 
Small Firm -0.639* 0.343 
Medium Firm -0.162 0.288 
Medium Large Firm 0.29 0.268 
Low Tech 2.828*** 0.249 
Medium Low Tech 1.237*** 0.182 
Medium High Tech -0.144 0.215 
Seoul 0.203 0.318 
Busan -0.478 0.356 
Daegu 0.191 0.41 
Gwangju 0.253 0.57 
Daejeon 0.074 0.493 
Ulsan 1.17** 0.531 
Sejong -0.569 0.819 
Gyeonggi -0.333 0.27 
Gangwon -0.76 0.52 
Chungbuk -0.497 0.348 
Chungnam -0.126 0.336 
Jeonbuk -0.599 0.437 
Jeonnam -0.815 0.502 
Gyeongbuk -0.18 0.346 
Gyeongnam -0.603* 0.312 
Constant -1.94*** 0.601 
Pseudo R-squared 0.240 
Wald Chi-squared 353.74*** 
Log pseudo likelihood -814.1 
Number of observations 1,550 

Notes: The table shows the results of a logistic regression to estimate propensity score. The covariates included are 
log(𝑅&𝐷	𝑒𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒)!"!#, R&D staff ratio, firm size (categorized as small, medium, medium large, and large), 
firm’s age, technological intensity of the firm’s industry (categorized as low, medium low, medium high, and high). 
Additionally, the location of the firm’s headquarters in one of the 15 Korean administrative regions (Seoul, Busan, 
Daegu, Ulsan, Sejong, Gyeonggi, Gangwon, Chungbuk, Chungnam, Jeonbuk, Jeonnam, Gyeongbuk, and 
Gyeongnam) is also included as a covariate. * p < 0.1, ** p < 0.05, *** p < 0.01 

 

Logit model results are presented in Table 4. This model produces propensity scores for  

each observational unit. The significant determinants of joint adoption of both types of 
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innovation are log(𝑅&𝐷	𝑒𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒)!"!#, firm’s age, being a small firm, being in a low or 

medium-low technology industry, and having a headquarters in Ulsan or Gyeongnam regions. 

The logistic regression model used to estimate the propensity scores reveals several key 

determinants of the joint adoption of eco-innovation and digital technologies. For instance, firms 

with higher R&D expenditures and those located in certain regions may be more likely to adopt 

these innovations. This step is crucial for understanding the characteristics that predispose firms 

to pursue eco-innovation and digital transformation, providing insights into the underlying 

drivers of innovation adoption in the Korean manufacturing sector. A graph of the propensity 

scores, which compares adopters with non-adopters, is presented in Appendix Figure A.3. The 

upper section of the graph displays the p-scores for adopters, while the lower section shows the 

p-scores for non-adopters. 
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Table 5. Comparative analysis of the characteristics of firms with and without joint adoption of 
eco-innovation and new digital technology after matching 

Variable Treated Control Difference p-value 

log(𝑅&𝐷	𝑒𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒)!"!# 6.923 6.776 0.147* 0.073 
R&D Staff Ratio 10.504 11.176 -0.672 0.178 
Firm’s Age 27 26.251 0.749 0.308 
Small Firm 0.179 0.221 -0.042** 0.04 
Medium Firm 0.423 0.481 -0.058** 0.023 
Medium Large Firm 0.309 0.21 0.099*** 0 
Large Firm 0.089 0.088 0.001 0.928 
Low Tech 0.252 0.29 -0.038* 0.093 
Medium Low Tech 0.545 0.501 0.044* 0.089 
Medium High Tech 0.109 0.106 0.003 0.868 
High Tech 0.094 0.102 -0.008 0.604 
Seoul 0.127 0.149 -0.022 0.232 
Busan 0.046 0.04 0.006 0.526 
Daegu 0.042 0.046 -0.004 0.708 
Gwangju 0.023 0.025 -0.002 0.736 
Daejeon 0.023 0.009 0.014** 0.04 
Ulsan 0.038 0.045 -0.007 0.52 
Sejong 0.005 0.003 0.002 0.414 
Gyeonggi 0.322 0.285 0.037 0.117 
Gangwon 0.015 0.008 0.007 0.223 
Chungbuk 0.052 0.041 0.011 0.328 
Chungnam 0.08 0.076 0.004 0.773 
Jeonbuk 0.017 0.011 0.006 0.272 
Jeonnam 0.012 0.013 -0.001 0.818 
Gyeongbuk 0.052 0.06 -0.008 0.501 
Gyeongnam 0.078 0.086 -0.008 0.574 
Observations 754 721   

Notes: The covariates included are log(𝑅&𝐷	𝑒𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒)!"!#, R&D staff ratio, firm size (categorized as small, 
medium, medium large, and large), firm’s age, technological intensity of a firm’s industry (categorized as low, medium 
low, medium high, and high. Additionally, the location of the firm’s headquarters in one of the 15 Korean 
administrative regions (Seoul, Busan, Daegu, Ulsan, Sejong, Gyeonggi, Gangwon, Chungbuk, Chungnam, Jeonbuk, 
Jeonnam, Gyeongbuk, and Gyeongnam) is also included as a covariate. * p < 0.1, ** p < 0.05, *** p < 0.01 
    
 

Table 5 shows the paired t-test results after matching, indicating that the propensity 

score matching process was effective in balancing the observed covariates between the treated 

and control groups. Before matching, there were significant differences between the groups in 
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terms of log(𝑅&𝐷	𝑒𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒)!"!#, R&D staff ratio, firm’s age, firm size, technological 

intensity, and location, which could bias the treatment effect estimation. The result of the 

comparative analysis of characteristics between the treated and control groups before matching is 

presented in Appendix Table A.1.  

The analysis presented in the table focuses on assessing the differences in key variables 

between firms that have adopted both an eco-innovation and a new digital technology (treated) 

and those that have not done so (control) after the application of PSM. This method is used to 

ensure that the two groups are comparable on various characteristics, allowing for a more 

accurate estimation of the impact of adopting these innovations. After applying PSM, the 

differences between the treated and control groups were significantly reduced or eliminated 

across all measured variables, indicating that the matching process effectively created 

comparable groups. This outcome is crucial for the validity of the subsequent analyses assessing 

the impact of eco-innovation and digital transformation on firm performance, as it minimizes the 

risk that the observed effects are due to factors other than the treatment itself.  

Notably, the reduction in the difference between the two groups was not complete for all 

variables; for instance, log R&D expenditures and firm size still showed some differences 

between the groups after matching, though these were reduced. This indicates that while PSM 

can significantly improve the balance between groups, it does not always perfectly equalize all 

characteristics. The successful reduction in differences for most variables, however, supports 

moving forward to analyze the impact of eco-innovation and digital transformation on firms’ 

sales performance, with increased confidence that any observed effects are likely due to the 

innovations themselves rather than other confounding factors. 
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5.3. Covariate balancing test 

It is essential to perform a covariate balancing test after matching to ensure that the 

matching process successfully balanced the observed characteristics across the treatment and 

control groups. The results indicate significant improvement in balance post-matching, with the 

mean absolute standardized bias (MASB) for most covariates falling below the 20% threshold. 

This improvement suggests that the matched samples are comparable, allowing for a more 

accurate estimation of the treatment effect. 

To address the covariate differences used in estimating the propensity scores, a covariate 

balancing test was performed. This test aims to ensure that the matched samples of adopters and 

non-adopters are similar in their observable characteristics, except for their adoption of the 

relevant innovations. The MASB proposed by Rosenbaum & Rubin (1983) was used to evaluate 

covariate balance. After the MASB was computed for each variable both before and after 

matching, the average MASB across all variables was calculated. A valid matching process is 

indicated by an MASB of less than 20% between the treated and untreated groups after 

matching. If the standardized difference exceeds 20% after matching, it suggests the matching 

process was ineffective, resulting in poor matches. 
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Figure 1. Individual covariate balancing test 

 
Figure 1 shows the results of the covariate balancing test for each firm covariate, 

comparing the matched and unmatched samples. The figure demonstrates that the absolute bias 

for all variables is lower in the matched sample.    
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5.4. The estimation of the average treatment effect on the treated (ATET) 

Table 6. Impact of the joint adoption of eco-innovation and digital technology on firm’s sales 
with NNM and KBM 

Matching Algorithm Nearest Neighbor 
Matching 
(NNM) 

Kernel-Based Matching 
(KBM) 

(bandwidth=0.08) 
Panel A   
  Matched Treated 754 754 
  Matched Controls 721 721 
  Treated 11.038 11.038 
  Controls 10.577 10.652 
  ATET 0.461** 0.386*** 
  SE 0.192 0.146 
  t-statistic 2.4 2.64 
Panel B   
  Matched Treated 754 754 
  Matched Controls 721 721 
  ATET 0.461*** 0.386*** 
  SE 0.167 0.132 
  z-statistic 2.77 2.92 

Notes: This table presents the impact of the joint adoption of eco-innovation and digital technology on log(𝑠𝑎𝑙𝑒𝑠)!"!#, 
using two different matching algorithms: NNM and KBM. The results are reported in two panels: Panel A and Panel 
B. Both panels report the number of matched treated firms (754) and controls (721). Panel A provides the t-statistic, 
which helps assess the reliability of the ATET estimate, while Panel B uses a z-statistic derived from the standard 
errors bootstrapped with 150 replications to provide a more robust estimate. * p < 0.1, ** p < 0.05, *** p < 0.01 
 

As detailed in Section 4.3, the treatment variable in this analysis is the joint adoption of 

an eco-innovation and a new digital technology. Firms that adopted only one of these were 

excluded to focus exclusively on comparing the treatment effect, which is a combined and 

synergistic effect. Table 6 shows the respective ATETs of the joint adoption of an eco-

innovation and a new digital technology when NNM and KBM are used. These are commonly 

applied matching algorithms in the impact evaluation literature. For NNM, a treated firm is 

matched with its nearest neighbor, that is, the most similar firm among the untreated group, with 

replacements. Normal densities with bandwidths of 0.08 were used for the KBM, and standard 

errors were bootstrapped 150 times in Panel B. 
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The joint adoption of an eco-innovation and a new digital technology had significant 

positive effects on firms’ sales. Using NNM, the treated group (the firms that adopted both an 

eco-innovation and a new digital technology) consisted of 754 firms, and they were matched 

with 721 control firms (firms that adopted neither innovation). The ATET is calculated to be 

0.461, with a standard error of 0.192, resulting in a t-statistic of 2.4, which indicates statistical 

significance at the 5% significance level. This suggests that the adoption of both an eco-

innovation and a new digital technology had a positive and statistically significant effect on the 

treated firms compared with the control group. The KBM results also show a positive ATET of 

0.386 with a smaller standard error of 0.146, resulting in a higher t-statistic of 2.64, which 

provides stronger evidence of statistical significance. In this case, the bandwidth parameter set at 

0.08 indicates the range used to average the outcomes of the treated and control units, providing 

a smoother and potentially more generalized estimate of the treatment effect.  

The results from the two matching algorithms (NNM and KBM) are consistent in 

demonstrating a positive impact of the treatment on the treated firms. These coefficients 

correspond to increases in sales of approximately 46.1% and 38.6%, respectively. The fact that 

both methods yield statistically significant ATET values reinforces the robustness of the 

findings. In Panel (B), it is noteworthy that the standard errors were bootstrapped with 150 

replications, enhancing the reliability of these estimates by accounting for the variability in the 

sampling process. This bootstrapping procedure is essential in non-parametric methods like 

matching, where assumptions about the distribution of the estimator are not made. 
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Table 7. Impact of the joint adoption of eco-innovation and specific digital technologies on 
firms’ sales with NNM and KBM 

 Treatment Variable 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

Dependent 
variable: 
log(𝑠𝑎𝑙𝑒𝑠)!"!# 

Eco× 
AI 

Eco× 
Big data 

Eco× 
Block 
chain 

Eco× 
IoT 

Eco× 
Cloud 

Eco× 
Robotics 

Eco× 
3D 

Printing 

Eco× 
5G 

Eco
× 

AR 

ATET          

 NNM 0.511* 
(0.296) 

0.586*** 
(0.189) 

0.480 
(1.630) 

0.515*** 
(0.124) 

0.780*** 
(0.139) 

0.657*** 
(0.176) 

0.359* 
(0.185) 

0.493*** 
(0.144) 

- 
 

 KBM 0.421* 

(0.243) 
0.343** 

(0.138) 
1.052 

(1.225) 
0.252* 
(0.143) 

0.349*** 
(0.124) 

0.030 
(0.142) 

0.343* 
(0.190) 

0.452*** 
(0.137) - 

Matched 
Treated 62 289 5 488 577 249 184 288 - 

Matched 
Controls 718 721 188 721 721 721 721 721 - 

Notes: This table presents the impact of the joint adoption of eco-innovation and specific digital technologies on 
log(𝑠𝑎𝑙𝑒𝑠)!"!# , using two different matching algorithms: NNM and KBM. The treatment variables include 
combinations of eco-innovation with various digital technologies (AI, big data, blockchain, IoT, cloud computing, 
robotics, 3D printing, 5G, and AR). In this analysis, standard errors were bootstrapped with 150 replications. Column 
(9) Eco×AR, the combination of eco-innovation and AR, does not have coefficients due to an insufficient number of 
observations. * p < 0.1, ** p < 0.05, *** p < 0.01 
 
 

Table 7 analyzes the ATET of combining eco-innovation with specific digital 

technologies, measured in terms of the logarithm of a firm’s sales in 2021, employing two 

matching methods, NNM and KBM with a bandwidth of 0.08. The technologies examined 

include AI, big data, blockchain, IoT, cloud computing, robotics, 3D printing, 5G, and AR. This 

detailed breakdown demonstrates the varying impacts of combining eco-innovation with 

different digital technologies on firm sales. The absence of data for AR based on an insufficient 

number of observations suggests the need for further research in this area. 

Notably, the combination of eco-innovation and big data, cloud computing, and 5G 

shows a positive impact on sales at the 5% significance level. In particular, a coefficient of 0.586 

in column (2) corresponds to an approximate 58.6% increase in sales, and a coefficient of 0.343 
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in column (2) corresponds to an approximate 34.3% increase in sales. Likewise, each treatment 

increases the sales by 78.0% and 34.9% for column (5), and by 49.3% and 45.2% for column (8), 

respectively. Other combinations do not produce a consistent significant impact at the 5% 

significance level. This suggests that the combination of an eco-innovation with AI, blockchain, 

IoT, robotics, or 3D printing is not likely to be associated with an increase in sales. Due to 

missing observations, data on firms that adopted both an eco-innovation and AR are not 

available.  
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6 Discussion & Conclusion 

 

This study substantiates the synergy created by the twin transition, in which firms pursue 

decarbonization and digitalization simultaneously, as a compelling lever for enhanced firm 

performance. The empirical analysis reveals a significant increase in sales among Korean 

manufacturing firms that embraced both types of innovation during the period from 2019 to 

2021. The OLS models (Table 3) and ATET calculations drawn from PSM (Table 6 and Table 7) 

further validate the finding. These provide a strong argument that firms should engage in joint 

adoption of these two types of innovation. The significant increase in sales among firms that did 

so suggests that this transition is more than an environmental or technological effort; it is a 

valuable business strategy and an indication of a new operational paradigm that harmonizes 

profitability with sustainability.  

Real-world examples illuminate these findings. According to Ren & Li (2023), digital 

transformation has significantly improved the financial performance of renewable energy 

companies in China. Their study revealed that green technology innovation fully mediates the 

effect of digital transformation on financial performance, suggesting that digital advancements 

lead to more effective green technology innovations, which in turn boost financial outcomes. 

Moreover, according to Betti et al. (2020), digital transformation is revolutionizing all aspects of 

manufacturing, including reducing environmental impacts, such as by lowering emissions, 

reducing waste, and increasing the efficiency of energy, water, and raw materials consumption. 

Industry 4.0 can unlock significant value across multiple areas of a factory network in terms of 

1) computational data connectivity based on blockchain and IoT, 2) advanced production 

methods involving renewable energy technology and 3D printing, 3) analytics and intelligence 
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based on big data and AI, and 4) human-machine interaction with robotic processes and 

automation using virtual and augmented reality, resulting in labor-productivity increases and 

improvements in forecasting accuracy.  

However, the impact of the joint adoption of eco-innovation and digital technologies 

varies across the specific technologies adopted. The combination of eco-innovation with big 

data, cloud computing, or 5G telecommunications had a significant positive impact on Korean 

manufacturing firms’ sales across both NNM and KBM methods of PSM at the 5% significance 

level. This indicates that integrating these advanced technologies with eco-innovative practices 

can further enhance firms’ sales performance.  

The significance of the results when eco-innovation is combined with these three specific 

technologies may be because these technologies are immediately applicable and can be 

integrated seamlessly into current business operations. This quick integration may allow firms to 

see immediate benefits in terms of enhanced data management and connectivity, directly 

impacting their sales performance. Kusiak (2017) and Manyika et al. (2011) have discussed 

firms’ use of big data to enhance operational efficiency and competitiveness, obtaining real-time 

data on defects and adjusting their production processes immediately. Marston et al. (2011) has 

pointed out that cloud computing supports business operations, emphasizing its ability to reduce 

costs and enhance flexibility. Hashem et al. (2015) have highlighted that pairing cloud 

computing and big data has reduced the cost of automation and computerization for both 

individuals and enterprises, and also offers benefits like lower infrastructure maintenance 

expenses, improved management efficiency, and enhanced user accessibility. Fosso Wamba et 

al. (2015) have emphasized big data’s ability to optimize real-time resource management by 

analyzing workers’ skills and qualifications to improve decision making. In addition, 5G 
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technology can support increased connectivity and faster data transfer rates, which are essential 

for deploying advanced eco-innovative technologies such as smart grids. This enhances 

operational efficiency and supports real-time decision-making in the area of environmental 

management. 

On the other hand, technologies such as AI, blockchain, and robotics may have longer 

implementation and learning curves. The complexity and initial cost of implementing 

technologies like AI or robotics might not immediately translate into significant economic 

returns, making their short-term impact on sales less apparent. The time it takes to effectively 

integrate these technologies into business processes can delay their impact on sales. While AI 

can be used to improve quality management, standardization and maintenance through predictive 

analysis of machinery functions in the manufacturing process, the time required to train models 

and adapt business processes to fully leverage AI may delay tangible sales results due to 

identified barriers such as data quality, machine-to-machine variation, cybersecurity and 

operational regimes (Javaid et al., 2022). Blockchain also faces significant regulatory 

uncertainties and technical challenges related to scalability and security. These challenges can 

hinder its widespread adoption and thus delay its impact on sales. Similarly, the integration of 

robotics and IoT devices can raise concerns about cybersecurity, data privacy, and compliance 

with existing regulations, which can slow down their deployment and sales impact. 

Some technologies like IoT and 3D Printing may have more niche applications that may 

not directly contribute to immediate sales increases. Their benefits might be more pronounced 

when used to enhance long-term operational efficiency or when deployed in specific industries. 

It takes time to contribute to sales increases since additive manufacturing techniques such as 3D 

printing require training skilled labor and rely heavily on experience (Weller et al., 2015). 



 42 

Therefore, firms should be strategic to maximize the impact of such innovations. The 

findings underscore the importance of selecting and implementing tailored digital technologies 

that align closely with a firm’s operational needs and immediate goals. Technologies that offer 

rapid integration and immediate applicability to existing business models, such as big data, cloud 

computing, and 5G telecommunications, are more likely to drive significant increases in sales 

than technologies with longer time horizons. While the immediate impact of AI, blockchain, and 

other complex technologies on sales may be less significant, they hold potential to provide 

strategic benefits in the long term. Firms should consider phased implementations of these 

technologies that align with their long-term goals such as operational efficiency and innovation. 

This study suggests that a holistic approach that integrates immediately useful 

technologies with eco-innovations can provide a dual benefit of enhancing firm sustainability 

while boosting economic performance. In order to maximize the advantages of digital 

transformation in conjunction with eco-innovation, firms should make strategic choices about the 

technologies they adopt, considering both their immediate impact and their potential long-term 

benefits. This expanded discussion provides a deeper insight of how different technologies may 

influence sales performance when combined with eco-innovation. It suggests that firms should 

align their technological capabilities with their strategic business objectives to maximize the 

benefits of the synergy with eco-innovation. In the meantime, global challenges such as the 

COVID-19 pandemic have brought the principles of the twin transition into sharp focus. Firms 

that have proactively embraced these strategies have demonstrated remarkable resilience and 

agility, mitigating the pandemic’s disruptive impact. This resilience underscores the twin 

transition’s vital role in ensuring business continuity and preparing firms for future adversity. 
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The implications of this study stretch into the realm of policy-making. Policymakers have 

the opportunity to craft incentives that propel firms toward the twin transition. Incentives such as 

tax relief, subsidies, or R&D support could ease the initial financial burden of such changes and 

spotlight the long-term profitability of sustainable practices. Governments can also encourage the 

twin transition by cultivating an ecosystem that fosters both eco-innovation and digital 

transformation, including a comprehensive regulatory framework that offers clarity and 

predictability to businesses embarking on these transformations.  

A robust policy framework would offer not only encouragement, but systemic support, 

including for infrastructure development and public-private partnerships. Governments have the 

potential to catalyze the twin transition by creating an environment where eco-innovations and 

digital transformation can be piloted, scaled, and integrated into the broader economy. The 

establishment of a regulatory framework is also paramount. Policymakers should provide 

necessary guidelines and regulations to navigate the eco-digital transition. This framework could 

offer direction, establish technological and environmental standards, and enhance market 

predictability, thereby facilitating a smoother transition for firms. 

While this study analyzed the impact of the twin transition on sales performance in the 

Korean manufacturing sector, however, several limitations should be acknowledged. Although 

PSM is useful for reducing selection bias, it cannot account for unobservable variables that may 

influence both the adoption of innovations and sales outcomes, potentially leading to residual 

confounding. Additionally, the findings are specific to the Korean manufacturing sector and may 

not be generalizable to other sectors or countries, given the unique economic, cultural, and 

regulatory environment in Korea. The study period, spanning from 2019 to 2021, includes the 

impact of the COVID-19 pandemic, which may not represent normal conditions and could limit 
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the applicability of the results to other time periods. Finally, while the study found varied 

impacts of different digital technologies on sales, it did not deeply explore the mechanisms 

through which these technologies influence firm performance. These limitations highlight the 

need for caution in interpreting the findings and suggest areas for future research to address these 

gaps. 

In conclusion, the twin transition is more than a trend; it is a directive for the future of 

business and policy-making. This study reaffirms the need for firms to embrace this transition, 

avoiding a binary choice between sustainability and profitability and instead formulating an 

integrated strategy that leverages the symbiotic potential of eco-innovation and digital 

transformation to achieve business success. The future holds the promise of transformation, and 

a collective effort from businesses and policymakers alike is needed to harness the momentum of 

the twin transition to create a greener, more technologically integrated future. 
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Appendix 

In Figure A.1, the firm size distribution across the five categories demonstrates the 

diversity in the scale of these companies, with significant representation in each size category, 

indicating a broad range of firm sizes within the industry as a whole. In Figure A.2, the 

variability of the industry distribution across the five categories suggests the comprehensive 

involvement of various industries in the current market landscape. Figure A.3 illustrates the 

distribution of propensity scores for two groups: those who were treated (shown in red) and those 

who were untreated (shown in blue).  

Table A.1 provides the pre-matching comparative analysis of firms that adopted both 

eco-innovation and a new digital technology and those that did not. It reveals significant 

differences in R&D expenditures, R&D staff ratios, firm age, and the technological intensity of 

the firms’ industries. Notably, after matching, the differences are reduced, indicating the 

effectiveness of the matching process at creating comparable groups for further analysis. The p-

values suggest that these differences have varying levels of statistical significance. 
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Figure A.1. Firm size distribution across the five categories 
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Figure A.2. Industry distribution across the five categories 
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Figure A.3. Distribution of propensity scores by treatment and common support 
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Table A.1. Pre-matching comparative analysis of firms that adopted both eco-innovation and a 
new digital technology and those that did not  

Variable Matching status 
(Unmatched/Matched) 

Treated Control Difference p-value 

Log R&D 
Expenditure 

U 
M 

7.170 
6.923 

5.972 
6.776 

1.198*** 
0.147* 

0.000 
0.073 

R&D Staff U 
M 

11.166 
10.504 

9.376 
11.176 

1.79*** 
-0.672 

0.000 
0.178 

Firm’s Age U 
M 

27.806 
27 

23.094 
26.251 

4.712*** 
0.749 

0.000 
0.308 

Small Firm U 
M 

0.163 
0.179 

0.387 
0.221 

-0.224*** 
-0.042** 

0.000 
0.040 

Medium Firm U 
M 

0.392 
0.423 

0.415 
0.481 

-0.023 
-0.058** 

0.364 
0.023 

Medium Large Firm U 
M 

0.358 
0.309 

0.153 
0.210 

0.205*** 
0.099*** 

0.000 
0.000 

Large Firm U 
M 

0.087 
0.089 

0.046 
0.088 

0.041*** 
0.001 

0.001 
0.928 

Low Tech U 
M 

0.317 
0.252 

0.046 
0.290 

0.271*** 
-0.038* 

0.000 
0.093 

Medium Low Tech U 
M 

0.498 
0.545 

0.376 
0.501 

0.122*** 
0.044* 

0.000 
0.089 

Medium High Tech U 
M 

0.099 
0.109 

0.315 
0.106 

-0.216*** 
0.003 

0.000 
0.868 

High Tech U 
M 

0.086 
0.094 

0.264 
0.102 

-0.178*** 
-0.008 

0.000 
0.604 

Seoul U 
M 

0.157 
0.127 

0.078 
0.149 

0.079*** 
-0.022 

0.000 
0.232 

Busan U 
M 

0.043 
0.046 

0.061 
0.040 

-0.018 
0.006 

0.118 
0.526 

Daegu U 
M 

0.041 
0.042 

0.036 
0.046 

0.005 
-0.004 

0.614 
0.708 

Gwangju U 
M 

0.024 
0.023 

0.017 
0.025 

0.007 
-0.002 

0.302 
0.736 

Daejeon U 
M 

0.028 
0.023 

0.012 
0.009 

0.016** 
0.014** 

0.035 
0.040 

Ulsan U 
M 

0.035 
0.038 

0.011 
0.045 

0.024*** 
-0.007 

0.002 
0.520 

Sejong U 
M 

0.006 
0.005 

0.004 
0.003 

0.002 
0.002 

0.609 
0.414 

Gyeonggi U 
M 

0.310 
0.322 

0.345 
0.285 

-0.035 
0.037 

0.139 
0.117 

Gangwon U 
M 

0.014 
0.015 

0.021 
0.008 

-0.007 
0.007 

0.342 
0.223 

Chungbuk U 
M 

0.048 
0.052 

0.061 
0.041 

-0.013 
0.011 

0.268 
0.328 

Chungnam U 
M 

0.078 
0.080 

0.067 
0.076 

0.011 
0.004 

0.372 
0.773 

Jeonbuk U 
M 

0.016 
0.017 

0.032 
0.011 

-0.016** 
0.006 

0.034 
0.272 

Jeonnam U 
M 

0.011 
0.012 

0.033 
0.013 

-0.022*** 
-0.001 

0.002 
0.818 

Gyeongbuk U 
M 

0.048 
0.052 

0.055 
0.060 

-0.007 
-0.008 

0.522 
0.501 

Gyeongnam U 
M 

0.071 
0.078 

0.108 
0.086 

-0.037*** 
-0.008 

0.010 
0.574 

Notes: This table provides a comparative analysis before and after matching firms based on their adoption of eco-
innovation and digital technologies across different regions in Korea. Although Korea has 17 administrative regions 
including Seoul, Busan, Daegu, Gwangju, Daejeon, Ulsan, Incheon, Sejong, and various provinces such as Gyeonggi, 
Gangwon, Chungbuk, Chungnam, Jeonbuk, Jeonnam, Gyeongbuk, Gyeongnam, and Jeju, the analysis for ATET 
estimation used only 15, excluding Incheon and Jeju. Incheon was excluded due to significantly increased 
discrepancies between the treated and control groups after matching, which could bias the treatment effect estimates 
and disrupt the balance of the matching results. Jeju was also excluded due to missing values, affecting the 
completeness and accuracy of the analysis. * p < 0.1, ** p < 0.05, *** p < 0.01 
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